SEICMPNI III 11/12/12 DLDA.

P4-BT-Evam -Oct -12-333

Con	. 7376-12. KR-3	410
	(3 Hours) [Total Marks :	100
N.B.	 (1) Question No. 1 is compulsory. (2) Solve any four out of the remaining six questions. (3) Draw neat diagram wherever necessary. 	
1. ((a) Using Quine Mc Cluskey method, determine the minimal SoP form for – $F(A, B, C, D) = \Sigma m(4, 5, 8, 9, 11, 12, 13, 15)$	10
((b) Obtain the hamming code for 1010. Prove that hamming code is an error detecting and correcting code.	10
2. (a) Implement the following using 8:1 MUX	10
. ($F(A, B, C, D) = \Sigma m(0, 1, 2, 4, 6, 7, 8, 10, 14, 15)$ b) Draw a 4 bit ring counter. Draw the timing diagram and explain the working of counter.	10
3. (a) Design a sequence generator using T flip flop for the given sequence. Also identify and check for lock-out condition (if any) − 0 → 2 → 4 → 5 → 0 	10
(1	b) Using k-map method of minimization technique simplify $F(A, B, C, D) = \pi m(1, 2, 3, 8, 9, 10, 11, 14) + d(7,15)$	10
4. (a	a) Explain the operation of a 4 bit universal shift register.	- 10
· (t	Design a full adder circuit using half adders and some gates.	10
5. (8	Convert: SR to JK flip flop SR to D flip flop	10
(t	Compare the different logic families with respect to the following parameters – Fan in, Fan out, Noise margin, speed and power dissipation.	10
5. (a	Convert $(243.63)_8$ to decimal, binary $(210.2)_4 + (312.2)_4$	10
	Draw and design a combinational circuit that multiplies two 2-bit numbers A1 A2 and B1 B2 to produce a 4 bit product C3 C2 C1 C0.	10
7. W	Trite short notes on: (a) De Morgans Theorem (b) Decade Counters (c) Race around condition in JK flip flop (d) PLA and PAL	20