Roll No.

67043

MCA 1st Semester w.e.f. Dec. 2012 with new notes full and reappear candidates Examination— December, 2013

Digital Design Paper MCA-103

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

Note: Question No. 1 is compulsory. Attempt four more questions selecting one from each Unit.

- 1. Answer the following questions briefly:
 - (a) Define dynamic RAM.

2

(b) Write uses of 1's complement.

2

	(C)	numbers. 2
	(d)	Discuss uses of Gray code. 2
	(e)	Explain ROM and their uses. 2
15	(f)	What is modules of a counter? 2
žķ	(g)	Write advantages of truth tables. 2
	(h)	Convert decimal number 76.25 to its binary equivalent.
		UNIT – I
2.	(a)	What is binary multiplicity? How is it useful and used? Discuss with examples.
*	(b)	Discuss uses and advantages of BCD and Hamming codes with examples.
3.	- 10	plain the following briefly with suitable amples:
R		Convert binary number 1001111011.1010 to its octal and decimal equivalents. 8 Addition and subtraction using 2's complement methods.
670	43-10	8 50-(P-4)(Q-9)(13)

UNIT - II

4.	(a)	What	is	Boo	lean	al	gebra	a ?	How	is	it
12.		useful	ε	and	use	d	?	Ex	plain	w	lth
		examples.									8

(b) Discuss uses and advantages of Karnaugh map with suitable examples.

8

5. Describe the following with examples:

- (a) Quine-Mc-Cluskey tabular method and its uses.
- (b) NMOS and PMOS logic families. 8

UNIT - III

- 6. (a) What is flip-flop? How is it used and useful? Explain working of D-flip flop with diagram.
 - (b) Differentiate between adder and subtractor with suitable examples. 8
- 67043-1050-(P-4)(Q-9)(13) (3) [Turn Over

7.	Explain the following with examples:						
	(i)	Contrast	between	synchron	ous		
		asynchronous	93 •	8			
	(ii)	Parity between	n generator	and checker.	8		
*			* **	* *			
50		U	NIT - IV	Ti.			
8.	8. (a) What is binary ripple counter? How is						
-	used and different from other counters						
		Discuss with	examples.		8		
	(b)	Explain pre	-settable	counters v	vith		
W.		suitable exam	ples.	¥1	8		
	n .	st	16		5		
9.	Explain the following with examples:						
	(i)	Up/Down cou	inters.	# # #	8		
	(ii)	Controlled sh	ift registers	3.	8		