(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, MCT, MMT, AE)
Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1.a) Test the following series for absolute and conditional convergence $\frac{1}{1^2+1} - \frac{2}{2^2+1} + \frac{3}{3^2+1} - \frac{4}{4^2+1} + \dots$

b) Test for convergence the series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(3!)^2} x^n$$
. [8+8]

- 2.a) If $f_1 = xy + yz + zx$, $f_2 = x^2 + y^2 + z^2$, $f_3 = x + y + z$. Determine if f_1, f_2, f_3 are functionally dependent. If so find the relation.
 - b) Final the circle of curvature for the curve $x^3 + y^3 = 3xy$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$. [8+8]
- 3.a) Trace the curve $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$, a > 0.
 - b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x. [8+8]
- 4.a) Find the orthogonal trajectories of the family of curves $r^2 = a^2 C \cos 2\theta$ (a is the parameter).
 - b) Solve the differential equation $(2x+3)^2 \frac{d^2y}{dx^2} (2x+3)\frac{dy}{dx} 12y = 6x$. [8+8]
- 5.a) Find the Laplace Transform of the Saw Tooth wave, $f(t) = \frac{k}{p}t, \quad 0 < t < p$ f(t+p) = f(t)
 - b) Prove that L(L(t)) = L(f * g) = H(s) = F(s)G(s). Where (f * g)t is the convolution of f and g and L(f(t)) = F(s), L(g(t)) = G(s). [8+8]
- 6.a) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.
 - b) By transforming into cylindrical coordinates evaluate $\iiint (x^2 + y^2 + z^2) dx \, dy \, dz$, taken over the region $0 \le z \le x^2 + y^2 \le 1$. [8+8]

- 7.a) Find the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).
 - b) Show that $\operatorname{curl}(\operatorname{curl} F) = \operatorname{grad}(\operatorname{div} F) \nabla^2 F$. [8+8]
- 8.a) Evaluate $\iiint \nabla \cdot \overline{F} \, dV$ where V is the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0, z = 2, $F = yi + xj + z^2k$.
 - b) Verify Green's Theorem in a plane for $\int_C (y \sin x) dx + \cos x dy$ where C is the

Triangle joins
$$(0,0)$$
, $\left(\frac{\pi}{2},0\right)$ and $\left(\frac{\pi}{2},1\right)$. [8+8]

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, MCT, MMT, AE)
Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Trace the curve $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$, a > 0.
 - b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x. [8+8]
- 2.a) Find the orthogonal trajectories of the family of curves $r^2 = a^2 C \cos 2\theta$ (a is the parameter).
 - b) Solve the differential equation $(2x+3)^2 \frac{d^2y}{dx^2} (2x+3)\frac{dy}{dx} 12y = 6x$. [8+8]
- 3.a) Find the Laplace Transform of the Saw Tooth wave, $f(t) = \frac{k}{p}t, \quad 0 < t < p$ f(t+p) = f(t)
 - b) Prove that L(L(t)) = L(f * g) = H(s) = F(s)G(s). Where (f * g)t is the convolution of f and g and L(f(t)) = F(s), L(g(t)) = G(s). [8+8]
- 4.a) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.
 - b) By transforming into cylindrical coordinates evaluate $\iiint (x^2 + y^2 + z^2) dx \, dy \, dz$, taken over the region $0 \le z \le x^2 + y^2 \le 1$. [8+8]
- 5.a) Find the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).
 - b) Show that $\operatorname{curl}(\operatorname{curl} F) = \operatorname{grad}(\operatorname{div} F) \nabla^2 F$. [8+8]
- 6.a) Evaluate $\iiint \nabla \cdot \overline{F} \, dV$ where V is the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0, z = 2, $F = yi + xj + z^2k$.
 - b) Verify Green's Theorem in a plane for $\int_C (y \sin x) dx + \cos x dy$ where C is the

Triangle joins
$$(0,0)$$
, $\left(\frac{\pi}{2},0\right)$ and $\left(\frac{\pi}{2},1\right)$. [8+8]

7.a) Test the following series for absolute and conditional convergence $\frac{1}{1^2+1} - \frac{2}{2^2+1} + \frac{3}{3^2+1} - \frac{4}{4^2+1} + \dots$

b) Test for convergence the series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(3!)^2} x^n$$
. [8+8]

- 8.a) If $f_1 = xy + yz + zx$, $f_2 = x^2 + y^2 + z^2$, $f_3 = x + y + z$. Determine if f_1, f_2, f_3 are functionally dependent. If so find the relation.
 - b) Final the circle of curvature for the curve $x^3 + y^3 = 3xy$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$. [8+8]

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, MCT, MMT, AE)
Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Find the Laplace Transform of the Saw Tooth wave, $f(t) = \frac{k}{p}t, \quad 0 < t < p$ f(t+p) = f(t)
 - b) Prove that L(L(t)) = L(f * g) = H(s) = F(s)G(s). Where (f * g)t is the convolution of f and g and L(f(t)) = F(s), L(g(t)) = G(s). [8+8]
- 2.a) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.
 - b) By transforming into cylindrical coordinates evaluate $\iiint (x^2 + y^2 + z^2) dx \, dy \, dz$, taken over the region $0 \le z \le x^2 + y^2 \le 1$. [8+8]
- 3.a) Find the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).
 - b) Show that $\operatorname{curl}(\operatorname{curl} F) = \operatorname{grad}(\operatorname{div} F) \nabla^2 F$. [8+8]
- 4.a) Evaluate $\iiint \nabla \cdot \overline{F} \, dV$ where V is the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0, z = 2, $F = yi + xj + z^2k$.
 - b) Verify Green's Theorem in a plane for $\int_C (y-\sin x)dx + \cos xdy$ where C is the Triangle joins (0,0), $\left(\frac{\pi}{2},0\right)$ and $\left(\frac{\pi}{2},1\right)$. [8+8]
- 5.a) Test the following series for absolute and conditional convergence $\frac{1}{1^2+1} \frac{2}{2^2+1} + \frac{3}{3^2+1} \frac{4}{4^2+1} + \dots$
 - b) Test for convergence the series $\sum_{n=1}^{\infty} \frac{(2n)!}{(3!)^2} x^n$. [8+8]

- 6.a) If $f_1 = xy + yz + zx$, $f_2 = x^2 + y^2 + z^2$, $f_3 = x + y + z$. Determine if f_1, f_2, f_3 are functionally dependent. If so find the relation.
 - b) Final the circle of curvature for the curve $x^3 + y^3 = 3xy$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$. [8+8]
- 7.a) Trace the curve $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$, a > 0.
 - b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x. [8+8]
- 8.a) Find the orthogonal trajectories of the family of curves $r^2 = a^2 C \cos 2\theta$ (a is the parameter).
 - b) Solve the differential equation $(2x+3)^2 \frac{d^2y}{dx^2} (2x+3)\frac{dy}{dx} 12y = 6x$. [8+8]

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, MCT, MMT, AE)
Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Find the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).
 - b) Show that $\operatorname{curl}(\operatorname{curl} F) = \operatorname{grad}(\operatorname{div} F) \nabla^2 F$. [8+8]
- 2.a) Evaluate $\iiint \nabla \cdot \overline{F} \, dV$ where V is the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0, z = 2, $F = yi + xj + z^2k$.
 - b) Verify Green's Theorem in a plane for $\int_C (y \sin x) dx + \cos x dy$ where C is the

Triangle joins
$$(0,0)$$
, $\left(\frac{\pi}{2},0\right)$ and $\left(\frac{\pi}{2},1\right)$. [8+8]

- 3.a) Test the following series for absolute and conditional convergence $\frac{1}{1^2+1} \frac{2}{2^2+1} + \frac{3}{3^2+1} \frac{4}{4^2+1} + \dots$
 - b) Test for convergence the series $\sum_{n=1}^{\infty} \frac{(2n)!}{(3!)^2} x^n$. [8+8]
- 4.a) If $f_1 = xy + yz + zx$, $f_2 = x^2 + y^2 + z^2$, $f_3 = x + y + z$. Determine if f_1, f_2, f_3 are functionally dependent. If so find the relation.
 - b) Final the circle of curvature for the curve $x^3 + y^3 = 3xy$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$. [8+8]
- 5.a) Trace the curve $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$, a > 0.
 - b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x.

[8+8]

- 6.a) Find the orthogonal trajectories of the family of curves $r^2 = a^2 C \cos 2\theta$ (a is the parameter).
 - b) Solve the differential equation $(2x+3)^2 \frac{d^2y}{dx^2} (2x+3)\frac{dy}{dx} 12y = 6x$. [8+8]

- 7.a) Find the Laplace Transform of the Saw Tooth wave, $f(t) = \frac{k}{p}t$, 0 < t < p f(t+p) = f(t)
 - b) Prove that L(L(t)) = L(f * g) = H(s) = F(s)G(s). Where (f * g)t is the convolution of f and g and L(f(t)) = F(s), L(g(t)) = G(s). [8+8]
- 8.a) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.
 - b) By transforming into cylindrical coordinates evaluate $\iiint (x^2 + y^2 + z^2) dx \, dy \, dz$, taken over the region $0 \le z \le x^2 + y^2 \le 1$. [8+8]