B. Tech Degree VI Semester (Supplementary) Examination June 2006

CE 603 DESIGN OF STRUCTURES II

(1998 Admissions)

Time: 3 Hours		Maximum Marks: 100	
	•	(Use of IS 456, IS 800, IS 1343 and SP16 are permitted)	
1.	(a) (b)	Explain the use of SP-16 in column design. A rectangular column of effective height of 4m is subjected to a characteristic axial load of 800kn and bending moment of 100kNm about the major axis of the column. Design a suitable section for the column so that the width should not exceed 400mm. Use the minimum percentage of longitudinal steel.	(5)
		Assume $fy = 415N / mm^2 \& fck = 20N / mm^2$.	(20)
		OR	
II.	(a) (b)	Explain the design procedure of an open-well staircase. Design a dog-legged staircase for a floor to floor height of 3.1m. All the four sides are supported on brick walls 230mm thick and the internal width of the stair-room is restricted to 2m. Length of the stair-room may be suitably assumed. Use M ₁₅ concrete and Fe-415 steel.	(20)
III.	(a) (b)	Explain the Freyssinet system of pre-stressing. In a pre stressed concrete beam of cross-section 200mm x 300mm and span 6m an initial pre stressing force of 400kN is applied at an eccentricity of 70mm by tendon	(5)
		of area 400 mm ² . Assuming $E_x = 2 \times 10^5 N / mm^2$ and $E_c = 3.33 \times 10^4 N / mm^2$.	
		Anchor slip = 1.5mm creep coefficient of concrete = 2, concrete shrinkage = 0.002 and creep in steel = 3%. Find the percentage loss in pre stress. OR	(20)
IV.	(a)	What are the assumptions in the design of pre stressed concrete and explain the	
	(b)	general principles of pre-stressing? A pre-stressed concrete slab has a span of 10m. It supports a dead load of 4KN/sq.m	(8)
	(b)	excluding its own weight and a live load of 6KN/Sq.m. Design the slab at mid span	
	*	and check the stresses. Draw neat sketch.	(17)
V.	(a) (b)	Write short notes on bracing and lacing with sketches. Design the built-up column composed of two channel section placed back to back carrying an axial load of 1400KN. The column having a length of 7.5 ^m is effectively	(5)
		held in position at both ends but restrained against rotation at one end only. Design the	
		batten plates also. Assume $fy = 250N / mm^2$	(20)
VI.	(a)	OR Name different types of column bases and where it is used.	(5)
	(b)	Design a two tier grillage foundation to carry an axial load of 1000KN. The base plate is 700mm x 700mm below the stanchion. The concrete is M ₂₀ grade and bearing	(-)
		pressure of the earth is limited to 150KN/m ² .	(20)
VII.		Design an angle iron purlin for a trussed roof from the following data: Span of roof truss 12 ^m Spacing of roof truss 5 ^m Spacing of purlins along the slope of the roof truss Slope of roof truss vertical to 2 horizontal Wind load on roof surface normal to roof 1.04KN/m ²	
		Wind load on roof surface normal to roof = 1.04KN/m² Vertical load from roof sheeting etc = 0.200KN/m² OR	(25)
'VIII.		Design a self supporting steel chimney of height 45m and diameter 4m with a lining thickness of 100mm. Wind pressure is 1.5KN/m ² .	(25)
		ENGINEERIN	

