Code: 031505

B.Tech 5th Semester Exam., 2014

NETWORK THEORY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) All questions carry equal marks.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer from any seven of the following:
 - (a) In the circuit shown in Fig. 1

the current i and the rate of change of current $\frac{di}{dt}$ at t=0 are given by

- H 0, 0
- (ii) 1, 2

[2]

- (iii) 0, 3
- (iv) None of the above

(b) For critical damping the value of C in the circuit, shown in Fig. 2

Fig. 2

is

(i) 2 F

(ii) 1 F

- (iii) 1.5 F
- (iv) 3 F
- (c) The condition for reciprocity in h-parameters is
 - (i) $h_{12} = h_{21}$
- (47) $h_{12} = -h_{21}$
- (iii) $h_{11} = h_{22}$
- (iv) $h_{12} = h_{22}$

(d) The Z_{11} and Z_{22} parameters of the network shown in Fig. 3

are

- Ø 8Ω, 7.75Ω
- (ii) 13 Ω, 9 Ω
- (iii) 12Ω, 8·5Ω
- (it) None of the above

- (e) The cut-off frequencies of constant-k filters of all types are represented by
 - (i) $\frac{Z_1}{4Z_2} = 1$
 - (ii) $\frac{Z_1}{4Z_2} = 0$
 - (iii) $\frac{Z_1}{4Z_2} = -1$
 - (iv) None of the above
- (f) The Cauer form-II of a reactive network synthesis is the successful removal of
 - (i) poles at infinity
 - Jii) zero at infinity
 - (iii) poles at origin
 - (iv) zero at origin
- (g) If $F_1(s)$ and $F_2(s)$ are two positive real functions, then the function which is always positive real is
 - (i) $F_1(s)F_2(s)$

$$f(t)$$
 $\frac{F_1(s)}{F_2(s)}$

(iii)
$$\frac{F_1(s)F_2(s)}{F_1(s) + F_2(s)}$$

(iv)
$$F_1(s) - F_2(s)$$

(h) For a given network, the reduced incidence matrix is given as

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 0 & 1 & 0 & -1 & 1 \\ -1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

The parallel branches in the graph are

- (i) 1 and 2
- ¥ii) 2 and 3
- (jul) 6 and 7
- (iv) None of the above
- (i) Which one of the following statements is correct?

A tree in a network is a connected graph containing

- (i) all the nodes only
- (ii) all the branches only
- (iii) all the branches and nodes
- (iv) all the branches but no closed path
- (i) For a transfer function, $H(s) = \frac{P(s)}{Q(s)}$, where
 - P(s) and Q(s) are polynomials in s,
 - (i) the degree of P(s) is always greater than the degree of Q(s)
 - the degree of P(s) and Q(s) are the same
 - (iii) the degree of P(s) is independent of the degree of Q(s)
 - (iv) the maximum degree of P(s) and Q(s) differ at the most by one

AK15-1640/126

(Continued)

2. For the circuit shown in Fig. 4, find $i_L(t)$ and $v_C(t)$ for t > 0:

- (a) A one-port network has a coil of inductance L and resistance R shunted by a capacitance C. If poles and zeros of driving-point impedance Z(s) of this network are as poles at -1 ± j√3 and zero at -2 with Z(s) at s = 0 equal to 2, find R, L and C.
 - (b) For the network shown in Fig. 5, find the transfer admittance function $Y_{12}(s)$:

Fig. 5

4. For the network shown in Fig. 6, determine Y-parameters:

5 For the network shown in Fig. 7, draw the graph find the fundamental loop matrix taking branches 2, 4, 5 as tree branches and write the loop impedance matrix and loop equations:

6 If a constant-k high-pass filter has cut-c frequency of 10 kHz and the nominal impedance R₀ is 700 Ω, design the T- and π-sections of th filter. Determine its characteristic impedance phase constant at 25 kHz and attenuation at 8 kHz.

AK15--1640/126

Synthesize the following impedance function in Foster Form-II and Cauer Form-I:

$$Z(s) = \frac{3(s+2)(s+4)}{s(s+3)}$$

8. (a) The switch in the circuit shown in Fig. 8 is opened at t = 0. Determine v(t) for t > 0:

- (b) Derive reciprocity condition for two-port network in terms of hybrid parameters.
- 9. (a) The matrix A given below is a reduced incidence matrix of a graph. Draw the graph:

Nodes
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & -1 & 0 & 1 \\ 2 & -1 & 0 & 1 & 0 & 1 & 0 \\ 3 & 0 & 1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

(b) Write the properties of L-C immittance function.
