SA 1st half 131

Con. 3636-12.

d) Switch capacitor amplifier.

(REVISED COURSE)

A. VLSI Design

(3 Hours) [Total Marks: 100

BE | ETRX [UII (Rev) 15/5/2012

-	N.B.:	(1)	Question No. 1 is compulsory.		
		(2)	Attempt any four out of remaining six questions.		
		(3)	Assume any suitable data whenever required and justify the same.		
1.	b) Ex North c) If delay d) Di	a) Explain metal migration in interconnect. b) Explain programming techniques of EEPROM using hot electron and Fowler-Northeim emission. c) If the width and length of the interconnect is reduced by 30%, then the propagation delay of an interconnect will increase or decrease, by how much %? 5 d) Draw and explain manchester carry out circuit using carry kill bit. Also draw 4-input dynamic Manchester carry chain circuits.			
2.	buffer (J _{AL} = is 500 rise/fa	a) What would be the conductor width of power and ground wires to a 50 MHz clock buffer that drives 100 pF of on-chip load to satisfy the metal-migration consideration ($J_{AL} = 0.5 \text{mA/\mu m}$)? What is the ground bounce with chosen conductor size? The modulis 500 µm from both the power and ground pads and the supply voltage is 5 volts. The rise/fall time of clock is 1ns. (Assume sheet resistance of wire = $0.05\Omega/\text{sq}$).			
3	its can b) Ex	rry ed aplair	nd explain the drawback with ripple carry adder. Explain 4-bit CLA adder valuations, logical network and writs its Verilog description. I how ESD (electro-static discharge) affect the MOSFET. Give and expection circuits.	10	
4.	which b) Dr	n dete aw 4	and explain the maximum and minimum frequency calculation of clock sign ermine the data transfer rate through cascade system. X 4 pseudo-nMOS ROM array circuitry having stored following data. 010, 1100, 0101. Also list the no. of address pins, data pins and word lines.	10	
5.	a) Ex	plair	n the need of frequency compensation in CMOS operational amplifier. and explain single phase clock system and explain its drawback.	10 10	
6.			various technique of clock generation. Discuss 'H' tree clock distribution. cross talk in IC's? Explain various methods to reduce it.	10 10	
7.	a) Lob) R	ow p	ower design consideration. ility issues in CMOS circuits. save adder.	20	