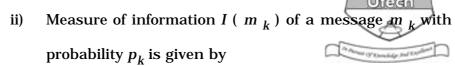
	Utech
Name:	
Roll No. :	To Design of Samulage 2nd Statement
Invigilator's Signature :	

CS/B.Tech/IT/NEW/SEM-6/IT-604A/2013 2013 INFORMATION THEORY & CODING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.


GROUP - A(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- The entropy of an information source is maximum when the symbol occurrences are
 - a) equiprobable
 - b) different probable
 - c) both (a) and (b)
 - d) none of these.

6406 Turn over

a)
$$\log_b \left(\frac{1}{p_k} \right)$$

b)
$$\log_b \left(\frac{1}{1 - p_k} \right)$$

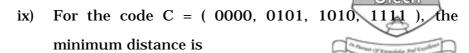
c)
$$\log_b (1 - p_k)$$

d)
$$\log_b(p_k)$$
.

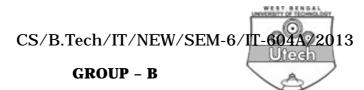
iii) Which of the following expressions is incorrect?

a)
$$H(y | x) = H(x, y) - H(x)$$

b)
$$I(x, y) = H(x) - H(y \mid x)$$


c)
$$H(x, y) = H(x | y) + H(x)$$

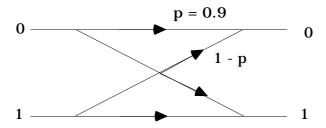
d)
$$I(x, y) = H(y) - H(y \mid x)$$
.


iv) Entropy represents

- a) amount of information
- b) rate of information
- c) measure of uncertainty
- d) probability of message.

- v) Code efficiency will be maximum when average code length (L) & entropy [H(x)] are related as
 - a) L = H(x)
 - b) L > H(x)
 - c) L < H(x)
 - d) none of these.
- vi) For GF (2^3), the elements in the set are
 - a) { 1, 2, 3, 4, 5, 6, 7 }
 - b) { 0, 1, 2, 3, 4, 5, 6 }
 - c) { 0, 1, 2, 3 }
 - d) { 0, 1, 2, 3, 4, 5, 6, 7 }.
- vii) 100110 \oplus 011011, when \oplus represents modulo-2 addition of binary numbers, yields
 - a) 100111
 - b) 111101
 - c) 000001
 - d) 011010.
- viii) A polynomial is called monic if
 - a) odd terms are unity
 - b) even terms are unity
 - c) leading co-efficienct is unity
 - d) leading co-efficient is zero.

- a) 1
- b) 2
- c) 3
- d) 4.
- x) A (7, 4) linear block code has a code rate of
 - a) 7
 - b) 4
 - c) 1.75
 - d) 0.571.
- xi) The Hamming distance between A = 1100001011 and B = 1001101001 is
 - a) 1
 - b) 3
 - c) 4
 - d) 5.
- xii) If a telephone channel has a bandwidth of 3000 Hz and SNR = 20 dB, the channel capacity is
 - a) 19.97 kbps
 - b) 1.19 kbps
 - c) 2.19 kbps
 - d) 1.19 bps.



(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. a) Define Entropy of a source.
 - b) A discrete memoryless source has five symbols x_1 , x_2 , x_3 , x_4 and x_5 with probabilities of occurrence $P(x_1) = 0.4$, $P(x_2) = 0.19$, $P(x_3) = 0.16$, $P(x_4) = 0.15$, $P(x_5) = 0.1$. Construct Huffman quaternary code and determine the code efficiency of the source.
- 3. For a BSC shown below find the channel capacity. Derive the formula that you have used.

- 4. What are the error detection and correction capabilities of block code?
- 5. Write down the steps necessary to encode a cyclic code in symmetric form. Consider the (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$. If u(X) = 1 + X is the message to be encoded, find the code polynomial and the corresponding code vector.
- 6. Explain the measure of information with reference to probability of occurrence of an event.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) State the channel capacity of a white, band-limited Gaussian channel. Derive an expression of noisy channel when bandwidth tends to be very long.
 - Explain the terms Self information, Channel capacity,
 Mutual information and Conditional entropy.
- 8. A code is composed of dots and dashes. Assume that the dash is 3 times as long as the dot and has one-third the probability of occurrence. Calculate:
 - i) the information in a dot and that in a dash.
 - ii) the average information in the dot-dash code.
 - iii) the average rate of information if a dot lasts for 10 ms and this same time interval is allowed between the symbols. 5 + 5 + 5
- 9. a) Draw the syndrome circuit for the (7, 4) cyclic code generated by $g(X) = 1 + X + X^3$. Suppose that the received vector is r = (0010110). Find the syndrome of r. What are the contents of the resistor after the 7th shift?
 - b) What is the principle of operation of Meggitt Decoder.

 Let the transmitted vector be 1001011 and the received vector be 1011011. Show the error correcting procedure using Meggitt Decoder.

 7 + 8

6406

- 10. a) Find an expression for the probability of decoding error in block code with transition probability p. Hence calculate its value for a (6, 3) code. The weight distribution of its coset leaders is $\alpha 0 = 1$, $\alpha 1 = 6$, $\alpha 2 = 3$, $\alpha 3 = 5$, $\alpha 4 = \alpha 5$, $\alpha 5 = \alpha 6 = 0$.
 - b) Write short notes on the following
 - i) Binary Symmetric Channel
 - ii) Standard Array.

$$7 + (4 + 4)$$

- 11. a) Show that $C = \{0000, 1100, 0011, 1111\}$ is a linear code. What is its minimum distance?
 - b) A (7, 3) linear code has the following generator matrix :

$$G = \left[\begin{array}{cccccccc} 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right]$$

Determine a systematic form of G. Hence find the parity-check matrix H for the code.

c) Design the encoder circuit for the above code.

$$(4+1)+(3+2)+5$$

- 12. Write short notes on any *three* of the following :
 - a) Shannon's (three) theorems in communication
 - b) Shannon-Fano Algorithm
 - c) Hamming Code
 - d) Huffman Code
 - e) Golay Code.