SEI CMPN [III (R) 30/5/13 DSDT

mk.72-1st hlf 13-K

Con. 6572-13.

GS-6525

(3 Hours)

Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.
 - Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary.
- (a) Prove by Mathematical Induction —

$$1^2 + 2^2 + 3^2 + \dots \quad n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

(b) Explain the terms:—

- Poset
- (ii) Normal Subgroup
- (iii) Lattice.
- (c) In a survey of 60 people, it was found that 25 reads Newsweek Magazine, 6 26 reads Times and 26 reads Fortune. Also 9 reads both Newsweek and Fortune, 11 reads both Newsweek and Times, 8 reads Time and Fortune and 8 reads no magazine at all.
 - Find the number of people who read all three magazines.
 - Determine number of people who read exactly one magazine.
- 2. (a) Define injective, surjective and bijective functions.

if $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by the formulas f(x) = x + 2 and $g(x) = x^2$

(i) f.g.f. (ii) g.f.g. Find

(b) Define equivalence relation on a set. Let R be a relation on the set of integers defined by aRb iff a-b is a multiple of 5. Prove that R is a equivalence relation.

(c) State the converse, inverse and contrapositive of the following:—

If it is cold, then he wears a hat.

- If an integer is a multiple of 2, then it is even.
- (a) Explain Hasse diagram. Draw the Hasse diagram of the relation given by:—
 - (i) $R_1 = \{ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (2, 5), (2, 6),$
 - (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5)(ii) $R_2 = \{ (1, 1), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (2, 5), (2, 6),$ (3, 3), (3, 4), (3, 5), (4, 4), (5, 5)
 - (b) Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Find the Transitive closure of R using Warshall's Algorithm.
 - (c) Consider the region shown below. It is bounded by a regular hexagon whose sides are the length 1 units. Show that if any seven points are chosen in this region then two of them must be no further apart than 1 unit.

4. (a) Show that the following graphs are isomorphic.

V₁
V₂
V₂

- (b) Let $R = \{(1, 2), (4, 3), (2, 2), (2, 1), (3, 1)\}$ be a relation on $s = \{1, 2, 3, 4\}$. Find the symmetric closure of R.
- (c) Define:
 - (i) Integral domain
 - (ii) Field
 - (iii) Normal Subgroup.
- 5. (a) What is a minimum spanning tree? Explain any one technique with example.
 - (b) Define Cyclic Group. Prove that the set $A = \{0, 1, 2, 3, 4, 5\}$ is a finite abelian under addition modulo 6.
 - (c) Determine whether the given graph has a Hamilton circuit or Eulerian circuit. If it does, find such a circuit.

6. (a) Consider the (3, 5) group encoding function $E: B^3 \to B^5$ is defined by — 8

E(000) = 00000 E(100) = 10011

E(001) = 00110 E(101) = 10101

E(010) = 01001 E(110) = 11010E(011) = 01111 E(111) = 11100

Decode the following words relative to a maximum decoding function:—

(i) 11001 (ii) 01010 (iii) 00111 (iv) 11100

(b) Which of the following diagram in the figure represents a lattice? Justify.

- (c) Define with example:—
 - (i) Planer graph
 - (ii) Semigroup
 - (iii) Quantifiers.
- ~7. (a) Find the solution to the recurrence relation:—

 $a_n = a_{n-1} + 2$ $n \ge 2$ subject to initial condition $a_1 = 3$.

- (b) Find the complement of each element in D_{30} .
- (c) Find the generating function for each of the following sequence:—
 - (i) $\{0, 1, 2, 3, 4, \dots \}$
 - (ii) {1, 2, 3, 4,}
 - (iii) {2, 2, 2, 2,}
 - (iv) $\{0, 0, 1, 1, 1, \dots\}$