Code: 021407

2013

THERMODYNAMICS

Time: 3 hours Full Marks: 70

Instructions:

- The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer (any seven): 2×7=14
 - (a) In case of free expansion between state-1 and state-2, which of the following is correct considering no heat interaction?
 - (i) $U_1 = U_2$
 - (ii) $W_{1-2} = 0$
 - (iii) $Q_{1-2} = 0$
 - (iv) All of the above
 - (b) The latent heat of vaporisation with increase in pressure of water
 - (i) increases
 - (ii) remains constant
 - (iii) decreases
 - (iv) None of the above

- (c) As differentials heat and work would be described mathematically as
 - (i) inexact
 - (ii) exact
 - (iii) discontinuity
 - (iv) point function
- (d) Heat is being supplied to air in a cylinder fitted with a frictionless piston held by a constant weight, the process is
 - (i) isochoric
 - (ii) isobaric
 - (iii) adiabatic
 - (iv) isothermal
- (e) Expansion of hot gases in an IC engine can be approximated to an
 - (i) isochoric
 - (ii) isobaric
 - (iii) adiabatic
 - (iv) isothermal
- (f) A refrigerator and a heat pump operate between same temperature limits. If the COP of refrigerator is 4, then the COP of heat pump is
 - (i) 3
 - (ii) 4
 - (iii) 4·4
 - (iv) 5

(Continued)

(g)	A relation of vapour pressure to enthalpy of vaporisation is expressed in	2.	(a)	Define internal energy. Show that internal energy is a property of a system.	
(h)	(i) van der Waals equation (ii) Maxwell relation (iii) Carrier equation (iv) Clausius-Clapeyron equation For same maximum pressure and temperature among Otto, diesel and		(b)	A cylinder contains 0.12 m^3 of air at 1 bar and 90 °C. It is compressed to 0.03 m^3 . The final pressure being 6 bar. Find the index of compression, increase in internal energy and heat transferred. Take $R = 0.287 \text{ kJ/kg-K}$ and $C_v = 0.717 \text{ kJ/kg-K}$.	8
	dual cycles (ii) Otto cycle is most efficient (iii) dual cycle is most efficient	3.	(a)	Prove that the Kelvin-Planck and Clausius statement of the second law of thermodynamics are equivalent to each other.	6
(1)	(iv) None of the above Thermal efficiency of Rankine cycle can be improved by steam (i) reheating (ii) superheating (iii) regeneration		(b)	A reversed Carnot cycle operating as a refrigerator has a refrigerating capacity of 100 kJ/s while operating between temperature limits of -20 °C and 35 °C. Determine (i) power input and (ii) COP. What would be its efficiency if it runs as an engine?	8
	(iv) None of the above	4.	(a)	State and prove Clausius inequality.	7
0	The process of removing moisture from air at constant dry-bulb temperature is known as (i) sensible heating (ii) sensible cooling dehumidification		<i>(b)</i>	During isothermal heat addition process of a Carnot cycle, 800 kJ heat is added to the working fluid from a source of 527 °C. Determine (i) change in entropy of the working fluid, (ii) change in entropy of the source and (iii) total entropy change during the process.	7
	(iv) humidification			compo during the process.	7

AK13-800/386

AK13-800/386

5. (a) Define the following:

Pure substance

Saturation state

Triple point and critical point

- (b) A vessel of volume 0.04 m³ contains a mixture of saturated water and saturated steam at a temperature of 250 °C. The mass of liquid is 9 kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy and the internal energy.
- 6. In an air-standard dual cycle, the pressure and temperature at beginning of compression are 1 bar and 57 °C respectively. The heat supplied in the cycle is 1250 kJ/kg, two-third of this being added at constant volume and rest at constant pressure. If the compression ratio is 16, determine the airstandard efficiency.
- (a) Give limitation of Carnot vapour power cycle and explain how Rankine cycle helps in overcoming them.
 - (b) A steam power plant running on Rankine cycle has steam entering HP turbine at 20 MPa, 500 °C and leaving LP turbine at 90% dryness. Considering condenser pressure of 0.005 MPa and reheating occurring up to the temperature of 500 °C, determine the thermal efficiency of the cycle.

8. (a) What do you understand by dry-bulb and wet-bulb temperatures? When do d.b.t., w.b.t. and d.p.t. become equal?

- (b) 10 m³/min of air at 1 atm and 20 °C with 90% RH is mixed with 20 m³/min of air at 1 atm and 40 °C with 20% RH. Calculate the resulting state of mixture.
- Explain Maxwell relation in thermodynamics.
 - (b) A gaseous mixture consists of 1 kg of oxygen and 2 kg of nitrogen at a pressure of 150 kPa and a temperature of 20 °C. Determine the change in internal energy and enthalpy of the mixture when the mixture is heated to a temperature of 100 °C (i) at constant volume and (ii) at constant pressure.

Code: 021407

(Turn Over)

14