
 UNIT V

Operating Systems Page 1

UNIT V
CASE STUDY

LINUX interfaces and Shell.
Interfaces to Linux
 A Linux system can be regarded as a kind of pyramid, as illustrated in Fig.
10-1. at the bottom is the hardware, consisting of the CPU, memory, disks, a monitor and
keyboard, and other devices. Running on the bare hardware is the operating system. Its
function is to control the hardware and provide a system call interface to all the
programs. These system calls allow user programs to create and manage processes,
files, and other resources.
Programs make system calls by putting thearguments in registersand issuing trap instructions
to switch from user mode to kernel mode. Since there is no way to write a trap
instruction in C, a library is provided, with one procedure per system call. These
procedures are written in assembly language, but can be called from C. Each one first puts
its arguments in the proper place, then executes the trap instruction. Thus to execute
the read system call, a C program can call the read library procedure. As an aside, it is
the library interface, and not the system call interface, that is specified by POSIX. In
other words, POSIX tells which library procedures a conformant system must supply,
what their parameters are, what they must do, and what results they must return. It
does not even mention the actual system calls.

 UNIT V

Operating Systems Page 2

In addition to the operating system and system call library, all versions of Linux
supply a large number of standard programs, some of which are specified by the
POSIX 1003.2 standard, and some of which differ between Linux versions.

These include the command processor (shell), compilers, editors, text processing
programs, and file manipulation utilities. It is these programs that a user at the
keyboard invokes. Thus we can speak of three different interfaces to Linux: the true
system call interface, the library interface, and the interface formed by the set of
standard utility programs.

Most personal computer distributions of Linux have replaced this keyboard oriented user
interface with a mouse-oriented graphical user interface, without changing the operating
system itself at all. It is precisely this flexibility that makes Linux so popular and has
allowed it to survive numerous changes in the underlying technology so well.

The GUI creates a desktop environment, a familiar metaphor with windows, icons,
folders, toolbars, and drag-and-drop capabilities. A full desktop environment contains a
window manager, which controls the placement and appearance of windows, as well
as various applications, and provides a consistent graphical interface. GUis on Linux
are supported by the X Windowing System, or commonly Xll or just X, which defines
communication and display protocols for manipulating windows on bitmap displays for
UNIX and UNIX-like systems. The X server is the main component which controls
devices such as keyboards, mouse, screen and is responsible for redirecting input to or
accepting output from client programs. The actual GUI environment is typically built
on top of a low-level library, xlib, which contains the functionality to interact with the X
server. The graphical interface extends the basic functionality of Xll by emitting the
window view, providing buttons, menus, icons, and other options.
When working on Linux systems through a graphical interface, users may use mouse
clicks to run applications or open flies, drag and drop to copy files from one location
to another, and so on. In addition, users may invoke a terminal emulator program, or
xterm, which provides them with the basic command-line interface to the operating
system.
The Shell
 Although Linux systems have a graphical user interface, most programmers and
sophisticated users still prefer a command-line interface, called the shell.
The shell command-line interface is much faster to use, more powerful, easily
extensible, and does not give the user RSI from having to use a mouse all the time.
Below we will briefly describe the bash shell (bash). It is heavily based on the original
UNIX shell, Bourne shell, and in fact its name is an acronym for Bourne Again Shell.
Many other shells are also in use (ksh, csh, etc.), but, bash is the default shell in most
Linux systems.

 UNIT V

Operating Systems Page 3

When the shell starts up, it initializes itself, then types a prompt character, often a
percent or dollar sign, on the screen and waits for the user to type a command line.
 When the user types a command line, the shell extracts the first word from it, assumes
it is the name of a program to be run, searches for this program, and if it finds it, runs the
program. The shell then suspends itself until the program terminates, at which time it tries to
read the next command. What is important here is simply the observation that the shell is
an ordinary user program. All it needs is the ability to read from the keyboard and write
tothe monitor and the power to execute other programs.
 Commands may take arguments, which are passed to the called program as
character strings. For example, the command line

cpsrc dest

Invokes the cp program with two arguments, src and dest. This program interprets the first
one to be the name of an existing file. It makes a copy of this file and calls the copy dest.

Not all arguments are file names. In head -20 file the first argument, -20, tells head to print
the first 20 lines of file, instead of the default number of lines, 10. Arguments thatcontrol the
operation of a command or specify an optional value are called flags, and by convention are
indicated with a dash. The dash is required to avoid ambiguity, because the command head
20 file is perfectly legal, and tells head to first print the initial 10 lines of a file called 20,
and then print the initial 10 lines of a second file called file. Most Linux commands
accept multiple flags and arguments.

To make it easy to specify multiple file names, the shell accepts magic characters, sometimes
called wild cards. An asterisk, for example, matches all possible strings, so

Is *.C

tellsls to list all the files whose name ends in .c. If files named x.c, y.c, and z.c all exist, the
above command is equivalent to typing

Is x.cy.cz.c

Another wild card is the question mark, which matches any one character. A list of
characters insidesquare brackets selects any of them, so

Is [ape]*

Listsall files beginning with «a", "p", or "e".

A program like the shell does not have to open the terminal in order to read from it
or write to it. Instead, when it starts up, it automatically has access to a file called
standard input (for reading), a file called standard output (for writing normal output),
and a file called standard error (for writing error messages). Normally, all three default

 UNIT V

Operating Systems Page 4

to the terminal, so that reads from standard input come from the keyboard and writes to
standard output or standard error go to the screen. Many Linux programs read from
standard input and write to standard output as the default. For example,

sort

invokes the sort program, which reads lines from the terminal (until the user types a
CTRL-D, to indicate end of file), sorts them alphabetically, and writes the result to the
screen. It is also possible to redirect standard input and standard output, as that is often
useful. The syntax for redirecting standard input uses a less than sign (<) followed by
the input file name. Similarly, standard output is redirected using a greater than sign
(>). It is permitted to redirect bothin the same command. For example, the command

sort<in >OUt

causes sort to take its input from the file in and write its output to the file out. Since
standard error has not been redirected, any error messages go to the screen. A program
that reads its input from standard input, does some processing on it, and writes its
output to standard output is called a filter.

Consider the following command line consisting of three separate commands:

sort<in >temp; head -30 <temp; rm temp

It first runs sort, taking the input from in and writing the output to temp. When that
has been completed, the shell runs head, telling it to print the first 30 lines of temp
and print them on standard output, which defaults to the terminal. Finally, the
temporary file is removed.

It frequently occurs that the first program in a command line produces output that is
used as the input on the next program. In the above example, we used the file temp to
hold this output. However, Linux provides a simpler construction todo the same thing. In

sort<in I head -30

the vertical bar, called the pipe symbol, says to take the output from sort and useit as
the input to head, eliminating the need for creating, using, and removing the temporary
file. A collection of commands connected by pipe symbols, called a pipeline, may
contain arbitrarily many commands. A four-component pipeline isshown by the following
example:

grepter *.t I sort I head -20 I tail -5 >foo

Here all the lines containing the string "ter" in all the files ending in .t are written to
standard output, where they are sorted. The first 20 of these are selected out by head,

 UNIT V

Operating Systems Page 5

which passes then to tail, which writes the last five (i.e., lines 16 to 20 in the sorted list)
to foo. This is an example of how Linux provides basic building blocks (numerous
filters), each of which does one job, along with a mechanism for them to be put
together in almost limitless ways.

Linux is a general-purpose multiprogramming system. A single user can run several
programs at once, each as a separate process. The shell syntax for running a process in the
background is to follow its command with an ampersand. Thus

we -I <a >b &

runs the word-count program, we, to count the number of lines (-1 flag) m 1ts input, a,
writing the result to b, but does it in the background. As soon as the command has
been typed, the shell types the prompt and is ready to accept and handle the next
command. Pipelines can also be put in the background, for example, by

sort<X I head &

Multiple pipelines can run in the background simultaneously. It is possible to put a list of
shell commands in a file and then start a shell with this file as standard input. The (second)
shell just processes them in order, the same as it would with commands typed on the
keyboard. Files containing shell commands are called shell scripts. Shell scripts may
assign values to shell variables and then read them later. They may also have
parameters, and use if, for, while, and case constructs. Thus a shell script is really a program
written in shell language. The Berkeley C shell is an alternative shell that has been
designed to make shell scripts (and the command language in general) look like C
programs in many respects. Since the shell is just another user program, other people
have written and distributed a variety of other shells.

Structure of the Linux kernel.

 The kernel sits directly on the hardware and enables interactions with 110
devices and the memory management unit and controls CPU access to them. At the
lowest level, as shown in Fig. 10-3 it contains interrupt handlers, which are the primary
way for interacting with devices, and the low-level dispatching mechanism. This
dispatching occurs when an interrupt happens. The low-level code here stops the running
process, saves its state in the kernel process structures, and starts the appropriate driver.
Process dispatching also happens when the kernel completes some operations and it is
time to start up a user process again. The dispatching code is in assembler and is quite
distinct from scheduling.

 UNIT V

Operating Systems Page 6

Next, we divide the various kernel subsystems into three main components. The I/O
component in Fig. 10-3 contains all kernel pieces responsible for interacting with devices
and performing network and storage I/O operations. At the highest level, the I/O operations
are all integrated under a Virtual FileSystem layer. That is, at the top level, performing a
read operation to a file, whether it is in memory or on disk, is the same as
performing a read operation to retrieve a character from a terminal input. A the lowest
level, all 110 operations pass through some device driver. All Linux drivers are
classified as either character device drivers or block device drivers, with the main
difference that seeks and random accesses are allowed on block devices and not on
character devices. Technically, network devices are really character devices, but they are
handledsomewhat differently, so that it is probably clearer to separate them, as has
been done in the figure. Above the device driver level, the kernel code is different for each
device type. Character devices may be used in two different ways. Some programs, such as
visual editors like vi and emacs, want every key stroke as it is hit. Raw terminal (tty)/O
makes this possible. Other software, such as the shell, is line oriented, and allows users
to edit the whole line before hitting ENTER to send it to the program. In this case the
character stream from the terminal device is passed through a so called line discipline,
and appropriate formatting is applied.

 UNIT V

Operating Systems Page 7

Networking software is often modular, with different devices and protocols supported. The
layer above the network drivers handles a kind of routing function, making sure that the
right packet goes to the right device or protocol handler. Most Linux systems contain
the full functionality of a hardware router within the kernel, although the performance is
less than that of a hardware router. Above the router code is the actual protocol stack,
always including IP and TCP, but also many additional protocols. Overlaying all the
network is the socket interface, which allows programs to create sockets for particular
networks and protocols, getting back a file descriptor for each socket to use later.
On top of the disk drivers is the 1/0 scheduler, which is responsible for ordering and
issuing disk operation requests in a way that tries to conserve wasteful disk head
movement or to meet some other system policy.
At the very top of the block device column are the file systems. Linux may have, and
it does in fact, multiple file systems coexisting concurrently. In order to hide the gruesome
architectural differences of various hardware devices from the file system
implementation, a generic block device layer provides an abstraction used by all file
systems.
To the right in are the other two key components of the Linux kernel. These are
responsible for the memory and process management tasks. Memory management tasks
include maintaining the virtual to physical memory mappings, maintaining a cache of
recently accessed pages and implementing a good page replacement policy, and on-
demand bringing in new pages of needed code and data into memory.
The key responsibility of the process management component is the creation and
termination of processes. It also includes the process scheduler, which chooses which
process or, rather, thread to run next. As we shall see in the next section, the Linux
kernel treats both processes and threads simply as executable entities, and will schedule
them based on a global scheduling policy. Finally, code for signal handling also belongs to
this component.

While the three components are represented separately in the figure, they are highly
interdependent. File systems typically access files through the block devices. However, in
order to hide the large latencies of disk accesses, files are copied into the page cache
in main memory. Some files may even be dynamically created and may only have an
in-memory representation, such as files providing.

Some runtime resource usage information. In addition, the virtual memory system may
rely on a disk partition or in-file swap area to back up parts of the main memory when it
needs to free up certain pages, and therefore relies on the I/0 component. Numerous
other interdependencies exist.

In addition to the static in-kernel components, Linux supports dynamically loadable
modules. These modules can be used to add or replace the default device drivers, file
system, networking, or other kernel codes. The modules are not shown in Fig. 10-3.

 UNIT V

Operating Systems Page 8

Finally, at the very top is the system call interface into the kernel. All system calls
come here, causing a trap which switches the execution from user mode into protected
kernel mode and passes control to one of the kernel components described above.

Discuss Linux scheduling.

Linux threads are kernel threads, so scheduling is based on threads, not processes. Linux
distinguishes three classes of threads for scheduling purposes:

1. Real-time FIFO.
2. Real-time round robin.
3. Timesharing.

Real-time FIFO threads are the highest priority and are not preemptable except by a
newly readied real-time FIFO thread with higher priority. Real-time round-robin threads
are the same as real-time FIFO threads except that they have time quanta associated
with them, and are preemptable by the clock. If multiple real-time round-robin threads
are ready, each one is run for its quantum, after which it goes to the end of the list of
real-time round-robin threads. Neither of these classes is actually real time in any sense.
Deadlines cannot be specified and guarantees are not given. These classes are simply
higher priority than threads in the standard timesharing class. The reason Linux calls
them real time is that Linux is conformant to the P1003.4 standard ("real-time"
extensions to UNIX) which uses those names. The real-time threads are internally
represented with priority levels from 0 to 99, 0 being the highest and 99 the lowest real-
time priority level.

The conventional, non-real-time threads are scheduled according to the following
algorithm. Internally, the non-real-time threads are associated with priority levels from
100 to 139, that is, Linux internally distinguishes among 140 priority levels. As for
the real-time round robin threads, Linux associates time quantum values for each of the
non-real-time priority levels. The quantum is the number of clock ticks the thread may
continue to run for. In the current Linux version, the clock runs at 1000Hz and each
tick is lms, which is called a jiffy.

Like most UNIX systems, Linux associates a nice value with each thread. The default is 0,
but this can be changed using the nice(value) system call, where value ranges from -20
to +19. This value determines the static priority of each thread.

A key data structure used by the Linux scheduler is a runqueue. A runqueue is associated
with each CPU in the system, and among other information, it maintains two arrays,
active and expired. As shown in Fig. 10-10, each of these fields is a pointer to an array of

 UNIT V

Operating Systems Page 9

140 list heads, each corresponding to a different priority. The list head points to a doubly
linked list of processes at a given priority.
The scheduler selects a task from the highest-priority active array. If that task's timeslice
(quantum) expires, it is moved to an expired list (potentially at a different priority
level). If the task blocks, for instance to wait on an 1/0 event, before its time slice
expires, once the event occurs and its execution can resume, it is placed back on the
original active array, and its timeslice is decremented to reflect the CPU time it already
consumed. Once its timeslice is

Fully exhausted, it too will be placed on an expired array. When there are no more tasks in
any of the active arrays, the scheduler simply swaps the pointers, so the expired arrays
now become active, and vice versa. This method ensures that low-priority tasks will not
starve.
Different priority levels are assigned different timeslice values. Linux assigns higher quanta
to higher-priority processes. For instance, tasks running at priority level 100 will
receive time quanta of 800 msec, whereas tasks at priority level of 139 will receive 5
msec.

 UNIT V

Operating Systems Page 10

The idea behind this scheme is to get processes out of the kernel fast. If a process is
trying to read a disk file, making it wait a second between read calls will slow it
down enormously. It is far better to let it run immediately after each request is
completed, so that it can make the next one quickly. Similarly, if a process was blocked
waiting for keyboard input, it is clearly an interactive process, and as such should be
given a high priority as soon as it is ready in order to ensure that interactive processes get
good service. In this light, CPU-bound processes basically get any service that is left
over when all the 110 bound and interactive processes are blocked.
Since Linux does not know a priori whether a task is I/O-or CPU-bound, it relies on
continuously maintaining interactivity heuristics. In this manner, Linux distinguishes
between static and dynamic priority. The threads' dynamic priority is continuously
recalculated, so as to

 (1) Reward interactive threads, and

(2) Punish CPU-hogging threads.

The maximum priority bonus is -5, since lower-priority values correspond to higher priority
received by the scheduler. The maximum priority penalty is +5.

More specifically, the scheduler maintains a sleep_avg variable associated with each
task. Whenever a task is awakened, this variable is incremented, whenever a task is
preempted or its quantum expires, this variable is decremented by the corresponding
value. This value is used to dynamically map the task's bonus to values from -5 to +5.
The Linux scheduler recalculates the new priority level as a thread is moved from the
active to the expired list.
In addition, the scheduler includes features particularly useful for multiprocessor or
multicore platforms. First, the runqueue structure is associated with each CPU in the
multiprocessing platform. The scheduler tries to maintain benefits from affinity
scheduling, and to schedule tasks on the CPU on which they were previously
executing. Second, a set of system calls is available to further specifyor modify the
affinity requirements of a select thread. Finally, the scheduler performs periodic load
balancing across runqueue of different CPUs to ensure thatthe system load is well
balanced, while still meeting certain performance or affinity requirements.
The scheduler considers only runnable tasks, which are placed on the appropriate
runqueue. Tasks which are not runnable and are waiting on various I/0 operations or
other kernel events are placed on another data structure, waitqueue.
A waitqueue is associated with each event that tasks may wait on. The head of the waitqueue
includes a pointer to a linked list of tasks and a spinlock. The spinlock is necessary so as
to ensure that the waitqueue can be concurrently manipulated through both the main
kernel code and interrupt handlers or other asynchronous invocations.

 UNIT V

Operating Systems Page 11

In fact, the kernel code contains synchronization variables in numerous locations.
Earlier Linux kernels had just one big kernel lock (BLK). This proved highly inefficient,
particularly on multiprocessor platforms, since it prevented processes on different CPUs
from executing kernel code concurrently. Hence, many new synchronization points were
introduced at much finer granularity.

Write short notes on Linux NFS.

NFS Architecture
 The basic idea behind NFS isto allow an arbitrary collection ofclients and servers to
share a common file system. In many cases, all the clients and servers are on the same LAN,
but this is not required. It is also possible to run NFS over a wide area network if the server
is far from the client.
Each NFS server exports one or more of its directories for access by remote clients. When a
directory is made available, so are all of its subdirectories, so in fact, entire directory trees are
normally exported as a unit. The list of directories a server exports is maintained in a file,
often /etc/exports, so these directories can be exported automatically whenever the server is
booted. Client’s access exported directories by mounting them. When a client mounts a
(remote) directory, it becomes part of its directory hierarchy, as shown in .
 In this example, client 1 has mounted the bin directory of server 1 on its own bin
directory, so it can now refer to the shell as /binlsh and get the shell on server 1. Diskless
workstations often have only a skeleton file system (in RAM) and get all their files from
remote servers like this. Similarly, client 1 has mounted server 2's directory! Projects on its
directory /usrlast/work so it can now access file a as /usr!ast/worklprojl!a. Finally, client
2has also mounted the projects directory and can also access file a, only as lmntlprojl!a. As
seen here, the same file can have different names on different clients due to its being mounted
in a different place in the respective trees. The mount point is entirely local to the clients; the
server does not know where it is mounted on any of its clients.

NFS Protocols
 Since one of the goals of NFS is to support a heterogeneous system, with clients and
servers possibly running different operating systems on different hardware, it is essential that
the interface between the clients and servers be well defined. Only then is it possible for
anyone to be able to write a new client implementation and expect it to work correctly with
existing servers, and vice versa.

 UNIT V

Operating Systems Page 12

NFS accomplishes this goal by defining two client-server protocols. A protocol is a set of
requests sent by clients to servers, along with the corresponding replies sent by the
servers back to the clients.

The first NFS protocol handles mounting. A client can send a path name to a server and
request permission to mount that directory somewhere in its directory hierarchy. The place
where it is to be mounted is not contained in the message, as the server does not care where it
is to be mounted. If the path name is legal and the directory specified has been exported, the
server returns a file handle to the client. The file handle contains fields uniquely identifying
the file system type, the disk, the i-node number of the directory, and security information.
Subsequent calls to read and write files in the mounted directory orany of its subdirectories
use the file handle.

When Linux boots, it runs the /etc/rc shell script before going multiuser. Commands to
mount remote file systems can be placed in this script, thus automatically mounting the
necessary remote file systems before allowing any logins.

Alternatively, most versions of Linux also support automounting. This feature allows a set of
remote directories to be associated with a local directory. None of these remote directories
are mounted (or their servers even contacted) when the client is booted. Instead, the first time
a remote file is opened, the operating system sends a message to each of the servers. The first

 UNIT V

Operating Systems Page 13

one to reply wins, and its directory is mountedAutomounting has two principal advantages
over static mounting via the

/etc/rc file. First, if one of the NFS servers named in /etc/rc happens to be down,

it is impossible to bring the client up, at least not without some difficulty, delay, and quite a
few error messages. If the user does not even need that server at the moment, all that work is
wasted. Second, by allowing the client to try a set of servers in parallel, a degree of fault
tolerance can be achieved (because only one of them needs to be up), and the performance
can be improved (by choosing the first one to reply-presumably the least heavily loaded).

On the other hand, it is tacitly assumed that all the file systems specified as alternatives for
the automount are identical. Since NFS provides no support for file or directory replication, it
is up to the user to arrange for all the file systems to be the same. Consequently,
automounting is most often used for read-only file systems containing system binaries and
other files that rarely change.

The second NFS protocol is for directory and file access. Clients can send messages to
servers to manipulate directories and read and write files. They can also access file attributes,
such as file mode, size, and time of last modification. Most Linux system calls are supported
by NFS, with the perhaps surprising exceptions of open and close.

The omission of open and close is not an accident. It is fully intentional. It is not necessary
to open a file before reading it, or to close it when done. Instead, to read a file, a client sends
the server a lookup message containing the file name, with a request to look it up and
return a file handle, which is a structure that identifies the file (i.e., contains a file system
identifier and i-node number, among other data). Unlike an open call, this lookup
operation does not copy any information into internal system tables. The read call contains
the file handle of the file to read, the offset in the file to begin reading, and the number of
bytes desired.

Each such message is self-contained. The advantage of this scheme is that the server
does not have to remember anything about open connections in between calls to it. Thus
if a server crashes and then recovers, no information about open files is lost, because there is
none. A server like this that does not maintain state information about open files is said to be
stateless.

Unfortunately, the NFS method makes it difficult to achieve the exact Linux file semantics.
For example, in Linux a file can be opened and locked so that other processes cannot
access it. When thefile is closed, the locks are released.

In a stateless server such as NFS, locks cannot be associated with open files, because the
server does not know which files are open. NFS therefore needs a separate, additional
mechanism to handle locking.

 UNIT V

Operating Systems Page 14

NFS Implementation
Although the implementation of the client and server code is independent of the NFS
protocols, most Linux systems use a three-layer implementation similar to that of Fig. 10-36.
The top layer is the system call layer. This handles calls like open, read, and close. After
parsing the call and checking the parameters, it invokes the second layer, the Virtual File
System (VFS) layer.

The task of the VFS layer is to maintain a table with one entry for each open file. The VFS
layer has an entry, a virtual i-node, or v-node, for every open file. V -nodes are used to tell
whether the file is local or remote. For remote files, enough information is provided to be
able to access them. For local files, the file system and i-node are recorded because modem
Linux systems can support multiple file systems (e.g., ext2fs, /proc, FAT, etc.). Although
VFS was invented to support NFS, most modern Linux systems now support it as an
integral part of the operating system, even if NFS is not used.
 To see how v-nodes are used, let us trace a sequence of mount, open, and read
system calls. To mount a remote file system, the system administrator (or /etc/rc) calls the
mount program specifying the remote directory, the local directory on which it is to
be mounted, and other information. The mount program parses the name of the remote
directory to be mounted and discovers the name of the NFS server on which the
remote directory is located. It then contactsthat machine, asking for a file handle for the

 UNIT V

Operating Systems Page 15

remote directory. If the directory exists and is available for remote mounting, the server
returns a file handle for the directory.
 Finally, it makes a mount system call, passing the handle to the kernel. The kernel
then constructs a v-node for the remote directory and asks the NFS client code in Fig. 10-
36 to create an r-node (remote i-node) in its internal tables to hold the file handle. The
v-node points to the r-node. Each v-node in the VFS layer will ultimately contain
either a pointer to an r-node in the NFS client code, or a pointer to an i-node in one of
the local file systems (shown as dashed lines in Fig. 10-36). Thus from the v-node it is
possible to see if a file or directory is local or remote. If it is local, the correct file
system and i-node can be located. If it is remote, the remote host and file handle can be
located.
 When a remote file is opened on the client, at some point during the parsing
of the path name, the kernel hits the directory on which the remote file system is
mounted. It sees that this directory is remote and in the directory's v-node finds the
pointer to the r-node. It then asks the NFS client code to open the file. The NFS
client code looks up the remaining portion of the path name on the remote server
associated with the mounted directory and gets back a file handle for it. It makes an r-
node for the remote file in its tables and reports back to the VFS layer, which puts in its
tables a v-node for the file that points to the r-node. Again here we see that every open file
or directory has a v-node that points to either an r-node or an i-node.
 The caller is given a file descriptor for the remote file. This file descriptor is mapped
onto the v-node by tables in the VFS layer. Note that no table entries are made on the
server side. Although the server is prepared to provide file handles upon request, it
does not keep track of which files happen to have file handles outstanding and which do
not. When a file handle is sent to it for file access, it checks the handle, and if it is
valid, uses it. Validation can include verifying an authentication key contained in the
RPC headers, if security is enabled.
When the file descriptor is used in a subsequent system call, for example, read, the
VFS layer locates the corresponding v-node, and from that determines whether it is
local or remote and also which i-node or r-node describes it. It then sends a message
to the server containing the handle, the file offset (which is maintained on the client
side, not the server side), and the byte count. For efficiency reasons, transfers between
client and server are done in large chunks, normally 8192 bytes, even if fewer bytes are
requested.
When the request message arrives at the server, it is passed to the VFS layer there,
which determines which local file system holds the requested file. The VFS layer then
makes a call to that local file system to read and return the bytes. These data are then
passed back to the client. After the client's VFS layer has gotten the8-KB chunk it
asked for, it automatically issues a request for the next chunk, so it will have it should
it be needed shortly. This feature, known as read ahead, improves performance
considerably.

 UNIT V

Operating Systems Page 16

 For writes an analogous path is followed from client to server. Also, transfers are
done in 8-KB chunks here too. If a write system call supplies fewer than 8 KB bytes of
data, the data are just accumulated locally. Only when the entire 8-KB chunk is full is
it sent to the server. However, when a file is closed, all of its data are sent to the server
immediately.
 Another technique used to improve performance is caching, as in ordinary
UNIX. Servers cache data to avoid disk accesses, but this is invisible to the clients.
Clients maintain two caches, one for file attributes (i-nodes) and one for file data. When
either an i-node or a file block is needed, a check is made to see if it can be satisfied
out of the cache. If so, network traffic can be avoided.
While client caching helps performance enormously, it also introduces some nasty problems.
Suppose that two clients are both caching the same file block and that one of them
modifies it. When the other one reads the block, it gets the old (stale) value. The
cache is not coherent.
 Given the potential severity of this problem, the NFS implementation does
several things to mitigate it. For one, associated with each cache block is a timer.
 When the timer expires, the entry is discarded. Normally, the timer is 3 sec
for data blocks and 30 sec for directory blocks. Doing this reduces the risk somewhat.
In addition, whenever a cached file is opened, a message is sent to the server to find
out when the file was last modified. If the last modification occurred after the local
copy was cached, the cache copy is discarded and the new copy fetched from the
server. Finally, once every 30 sec a cache timer expires, and all the dirty (i.e.,
modified) blocks in the cache are sent to the server. While not perfect, these patches
make the system highly usable in most practical circumstances.
 WINDOWS REGISTRY.
 Windows attaches a special kind of file system (optimized for small files) to the NT
namespace. This file system is called the registry. The registry is organized into separate
volumes called hives. Each hive is kept in a separate file (in the directory C:\
Windows\system32\config\ of the boot volume). When a Windows system boots, one
particular hive named SYSTEM is loaded into memory by the same boot program that loads
the kernel and other boot files, such as boot drivers, from the boot volume.
Windows keeps a great deal of crucial information in the SYSTEM hive, including
information about what drivers to use with what devices, what software to run initially, and
many parameters governing the operation of the system. This information is used even by
the boot program itself to determine which drivers are boot drivers, being needed
immediately upon boot. Such drivers include thosethat understand the file system and disk
drivers for the volume containing the operating system itself.
 Other configuration hives are used after the system boots to describe information
about the software installed on the system, particular users, and the classes of user-mode
COM (Component Object-Model) objects that are installed on the system. Login information
for local users is kept in the SAM (Security Access Manager) hive. Information for network

 UNIT V

Operating Systems Page 17

users is maintained by the [sass service in the SECURITY hive, and coordinated with the
network directory servers so that users can have a common account name and password
across an entire network. A list of the hives used in Windows Vista is shown .
 The registry gathers these files into a central store, which is available early in the
process of booting the system. This is important for implementing Windows plug-andplay
functionality. But the registry has become very disorganized as Windows has evolved.
There are poorly defined conventions about how the configuration information should be
arranged, and many applications take an ad hoc approach.

 Most users, applications, and all drivers run with full privileges, and frequently
modify system parameters in the registry directly-sometimes interfering with each other
and destabilizing the system.

The registry is a strange cross between a file system and a database, and yet really unlike
either.
To explore the registry Windows has a GUI program called regedit that allows you to open
and explore the directories (called keys) and data items (called values).
Procmon watches all the registry accesses that take place in the system and is very
illuminating. Some programs will access the same key over and over tens of thousands of
times.
As the name implies, regedit allows users to edit the registry-but be very careful if you
ever do. It is very easy to render your system unable to boot, or damage the installation
of applications so that you cannot fix them without a lot of wizardry.
Beginning with Windows Vista Microsoft has introduced a kernel-based transaction
manager with support for coordinated transactions that span both file system and registry
operations. Microsoft plans to use this facility in the future to avoid some of the metadata
corruption problems that occur when software installation does not complete correctly and
leaves around partial state in the system directories and registry hives.

 UNIT V

Operating Systems Page 18

The registry is accessible to the Win32 programmer. There are calls to create and delete
keys, look up values within keys, and more. Some of the more useful ones are listed in Fig.
11-12.

When the system is turned off, most of the registry information is stored on the disk in the
hives. Because their integrity is so critical to correct system functioning, backups are made
automatically and metadata writes are flushed to disk to prevent corruption in the event of a
system crash. Loss of the registry requires reinstalling all software on the system.
Write note on Job, Process, threads and Fiber management API calls.
New processes are created using the Win32 API function CreateProcess. This function has
many parameters and lots of options. It takes the name of the file to be executed, the
command-line strings (unparsed), and a pointer to the environment strings. There are also
flags and values that control many details such as how security is configured for the process
and first thread, debugger configuration, and scheduling priorities. A flag also specifies
whether open handles in the creator are to be passed to the new process. The function also
takes the current working directory for the new process and an optional data structure
with information about the GUI Window the process is to use. Rather than returning just a
process ID for the new process, Win32 returns both handles and IDs, both for the new
process and for its initial thread.
The large number of parameters reveals a number of differences from the design of process
creation in UNIX.

1. The actual search path for finding the program to execute is buried in the library code
for Win32, but managed more explicitly in UNIX.

2. The current working directory is a kernel-mode concept in UNIX but a user-mode
string in Windows. Windows does open a handle on the current directory for each
process, with the same annoying effect as in UNIX: You cannot delete the directory,
unless it happens to be across the network, in which case you can delete it.

3. UNIX parses the command line and passes an array of parameters, while Win32
leaves argument parsing up to the individual program. As a consequence, different
programs may handle wildcards (e.g., *.txt) and other special symbols in an
inconsistent way.

 UNIT V

Operating Systems Page 19

4. Whether file descriptors can be inherited in UNIX is a property of the handle. In
Windows it is a property of both the handle and a parameter to process creation.

5. Win32 is GUI-oriented, so new processes are directly passedinformation abouttheir
primary window, while this information is passed as parameters to GUI applications
in UNIX.

6. Windows does not have a SETUID bit as a property of the executable, but one
process can create a process that runs as a different user, as long as it can obtain a
token with that user's credentials.

7. The process and thread handle returned from Windows can be used to modify the new
process/thread in many substantive ways, including duplication of handles and setting
up the environment variables in the new process. UNIX just makes modifications to
the new process between the fork and exec calls.

Some of these differences are historical and philosophical. UNIX was designed to be
command-line-oriented rather than Gill-oriented like Windows.
UNIX users are more sophisticated, and understand concepts like PATH variables. Windows
Vista inherited a lot of legacy from MS-DOS.
The comparison is also skewed because Win32 is a user-mode wrapper around the
native NT process execution, much as the system library function wraps fork/exec in
UNIX. The actual NT system calls for creating processes and threads, NtCreateProcess and
NtCreateThread, are much simpler than the Win32 versions. The main parameters to NT
process creation are a handle on a section representing the program file to run, a flag
specifying whether the new process should, by default, inherit handles from the creator, and
parameters related to the security model. All the details of setting up the environment strings,
and creating the initial thread, are left to user-mode code that can use the handle on the
new process to manipulate its virtual address space directly.
To support the POSIX subsystem, native process creation has an option to create a new
process by copying the virtual address space of another process rather than mapping a section
object for a new program. This is only used to implement fork for POSIX, and not by
Win32.
Thread creation passes the CPU context to use for the new thread (which includes the stack
pointer and initial instruction pointer), a template for the TEB,and a flag saying whether
the thread should be immediately run or created in a suspended state (waiting for
somebody to call NtResumeThread on its handle). Creation of the user-mode stack and
pushing of the argvlargc parameters is left to user-mode code calling the native NT memory
management APis on the process handle.

In the Windows Vista release, a new native API for processes was included which moves
many of the user-mode steps into the kernel-mode executive, and combines process creation
with creation of the initial thread. The reason for the change was to support the use of
processes as security boundaries. Normally, all processes created by a user are considered to
be equally trusted. It is the user, as represented by a token that determines where the trust

 UNIT V

Operating Systems Page 20

boundary is. This change in Windows Vista allows processes to also provide trust
boundaries, but this means that the creating process does not have sufficient rights
regarding a new process handle to implement the details of process creation in user mode.

Write note on Process and Threads in SYMBIAN os.

Symbian OS is a multitasking operating system that uses the concepts of processes and
threads much like other operating systems do. However, the structure of the Symbian OS
kernel and the way it approaches the possible scarcity of resources influences the way
that it views these multitasking objects.

Threads and Nano threads

Instead of processes as the basis for multitasking, Symbian OS favors threads and is built
around the thread concept. Threads form the central unit of multitasking. A process is
simply seen by the operating system as a collection of threads with a process control
block and some memory space.
Thread support in Symbian OS is based in the nanokernel with nanothreads. The nanokernel
provides only simple thread support; each thread is supported by a nanokernel-based
nanothread. The nanokernel provides for nanothread scheduling, synchronization, and timing
services. Nanothreads run in privileged mode and need a stack to store their run-time
environment data. Nanothreads cannot run in user mode. This fact means that the operating
system can keep close, tight control over each one. Each nanothread needs a very minimal
set of data to run: basically, the location of its stack and how big that stack is. The
operating system keeps control of everything else, such as the code each thread uses,
and stores a thread's context on its run-time stack. Nanothreads have thread states like
processes have states. The model used by the Symbian OS nanokernel adds a few states to the
basic model. In addition to the basic states, nanothreads can be in the following states:

1. Suspended. This is when a thread suspends another thread and is meant to be
different from the waiting state, where a thread is blocked by some upper layer
object (e.g., a Symbian OS thread).

2. Fast Semaphore Wait. A thread in this state is waiting for a fast semaphore a type of
sentinel variable to be signaled. Fast semaphores are nanokernel level semaphores.

3. DFC Wait. A thread in this state is waiting for a delayed function call or DFC to be
added to the DFC queue. DFCs are used in device driver implementation. They
represent calls to the kernel that can be queued and scheduled for execution by
the Symbian OS kernel layer.

4. Sleep. Sleeping threads are waiting for a specific amount of time to elapse.
5. Other. There is a generic state that is used when developers implement extra

states for nanothreads. Developers do this when they extend the nanokernel
functional for new phone platforms (called personality layers). Developers who do

 UNIT V

Operating Systems Page 21

this must also implement how states are transitioned to and from their extended
implementations.

A nanothreadis essentially anultra-light-weight process. It has a mini-context that
getsswitched as nanothreads get moved onto and out of the processor. Each nanothread
has a state, as do processes. The keys to nanothreads are the tight control that the nanokernel
has over them and the minimal data that make up the context of each one.

Symbian OS threads build upon nanothreads; the kernel adds support beyond what the
nanokernel provides. User mode threads that are used for standard applications are
implemented by Symbian OS threads. Each Symbian OS thread contains ananothread and
addsits own run-time stack to the stack the nanothread uses. Symbian OS threads can operate
in kernel mode via system calls. Symbian OS also add exception handling and exit signaling
to the implementation.
Symbian OS threads implement their own set of states on top of the nanothread
implementation. Because Symbian OS threads add some functionality to the minimal
nanothread implementation, the new states reflect the new ideas built into Symbian OS
threads. Symbian OS adds seven new states that Symbian OS threads can be in, focused
on special blocking conditions that can happen to a Symbian OS thread. These special
states include waiting and suspending on (normal) semaphores, mutex variables, and
condition variables. Remember that, because of the implementation of Symbian OS
threads on top of nanothreads, these states are implemented in terms of nanothread states,
mostly by using the suspended nanothread state in various ways.
Processes
Processes in Symbian OS, then, are Symbian OS threads grouped together under a
single process control block structure with a single memory space. There may be only a
single thread of execution or there may be many threads less than one process control block.
Scheduling a process, then, is really implemented byscheduling a thread and initializing the
right process control block to use for its data needs. Symbian OS threads organized under a
single process work together in several ways. First, there is a single main thread that is
marked as the starting point for the process. Second, threads share scheduling parameters.
Changing parameters, that is, the method of scheduling, for the process changes the
parameters for all threads. Third, threads share memory space objects, including device and
other object descriptors. Finally, when a process is terminated, the kernel terminates all
threads in the process.
Active Objects
Active objects are specialized forms of threads, implemented in a a way as to lighten the
burden they place on the operating environment. Since Symbian OS is focused on
communication, manyapplications have a similar pattern of implementation: they write data
to a communication socket or send information through a pipe, and then they block as they
wait for a response from the receiver. Active objects are designed so that when they are

 UNIT V

Operating Systems Page 22

brought back from this blocked state, they have a single entry point into their code that is
called. This simplifies their implementation.
Since they run in user space, active objects have the properties of Symbian OS threads. As
such they have their own nanothread and can join with other Symbian OS threads to form a
process to the operating system. If active objects are just Symbian OS threads, one can ask
what advantage the operating system gains from this simplified thread model. The key to
active objects is in scheduling. While waiting for events, all active objects reside within a
single process andcan act as a single thread to the system. The kernel does not need to
continually check each active object to see if it can be unblocked. Active objects in a single
process, therefore, can be coordinated by a single scheduler implemented in a single thread.
By combining code that would otherwise be implemented as multiple threads into one thread,
by building fixed entry points into the code, and by using a single scheduler to coordinate
their execution, active objects form an efficient and lightweight version of standard threads.
It is important to realize where active objects fit into the Symbian OS process structure.
When a conventional thread makes a system call that blocks its execution while in the
waiting state, the operating system still needs to check the thread. Between context switches,
the operating system will spend time checking blocked processes in the wait state,
determining if any needs to move to the ready state.
Active objects place themselves in the wait state and wait for a specific event. Therefore, the
operating system does not need to check them but moves them when their specific
event has been triggered. The result is less thread checking and faster performance

Interprocess Communication
In a multithreaded environment like Symbian OS, interprocess communication is crucial to
system performance. Threads, especially in the form of system servers, communicate
constantly.
A socket is the basic communication model used by Symbian OS. It is an abstract
communication pipeline between two endpoints. The abstraction is used to hide both the
methods oftransport and the management of data between the endpoints. The concept of a
socket is used by Symbian OS to communicate between clients and servers, from
threads to devices, and between threads themselves.
The socket model also forms the basis of device VO. Again abstraction is the key to making
this model so useful. All the mechanics of exchanging data with a device are managed by the
operating system rather than by the application. Forexample, sockets that work over TCP/IP
in a networking environment can be easily adapted to work over a Bluetooth environment by
changing parameters in the type of socket used. Most of the rest of the data exchange work in
such a switchover is done by the operating system.
Symbian OS implements the standard synchronization primitives that one would find in
a general purpose operating system. Several forms of semaphores and mutexes are in wide
use across the operating system. These provide for synchronizing processes and threads.

