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UNIT V 
CASE STUDY 

 
LINUX  interfaces and Shell. 
Interfaces to Linux 
 A  Linux  system  can  be  regarded  as  a  kind  of  pyramid,  as  illustrated  in Fig.  
10-1. at the bottom is the hardware, consisting of the CPU, memory, disks, a monitor and 
keyboard, and other devices. Running on the bare hardware is the operating system.  Its 
function  is  to  control  the  hardware  and  provide  a  system  call interface  to  all  the  
programs.  These  system  calls  allow  user  programs  to  create and  manage processes,  
files,  and other resources. 
Programs make system calls by putting thearguments in registersand issuing trap instructions 
to switch from user mode to kernel mode.  Since  there  is  no  way  to  write  a  trap  
instruction  in  C,  a library  is  provided, with one procedure per system call. These 
procedures are written in assembly language, but can be called from C.  Each  one  first  puts  
its  arguments  in  the proper  place,  then  executes  the  trap  instruction.  Thus  to  execute  
the  read system call,  a C program  can  call  the  read library  procedure.  As  an  aside,  it  is 
the  library interface,  and  not  the  system  call  interface,  that  is  specified  by  POSIX.  In  
other words,  POSIX  tells  which  library  procedures  a  conformant  system  must  supply, 
what  their  parameters  are,  what  they  must  do,  and  what  results  they  must  return. It 
does not even mention the actual system calls. 
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In  addition  to  the  operating  system  and  system  call  library,  all  versions  of Linux  
supply  a large  number  of  standard  programs,  some  of  which  are  specified by  the  
POSIX  1003.2 standard,  and  some  of which  differ  between  Linux versions.  

These  include  the  command  processor  (shell),  compilers,  editors,  text  processing 
programs,  and  file  manipulation  utilities.  It  is  these  programs  that  a  user  at  the 
keyboard  invokes.  Thus  we  can  speak  of  three  different  interfaces  to  Linux:  the true  
system  call  interface,  the library  interface,  and  the  interface formed  by  the  set of 
standard  utility  programs.  

Most  personal  computer  distributions  of Linux  have  replaced  this keyboard oriented  user  
interface  with  a  mouse-oriented  graphical  user  interface,  without changing  the  operating  
system  itself  at  all.  It  is  precisely  this  flexibility  that makes  Linux  so  popular  and  has  
allowed  it  to  survive  numerous  changes  in  the underlying  technology so  well.  

The  GUI  creates  a  desktop  environment,  a  familiar  metaphor  with  windows, icons,  
folders,  toolbars,  and  drag-and-drop  capabilities.  A  full  desktop  environment  contains  a  
window  manager,  which  controls  the  placement  and  appearance of  windows,  as  well  
as  various  applications,  and  provides  a  consistent  graphical interface.  GUis  on Linux 
are  supported by the X Windowing System,  or commonly Xll or just X, which  defines  
communication  and display  protocols for manipulating windows  on  bitmap  displays  for  
UNIX  and  UNIX-like  systems.  The  X server  is the  main component which  controls  
devices  such as  keyboards,  mouse,  screen  and is  responsible  for  redirecting  input  to  or  
accepting  output  from  client  programs. The  actual  GUI  environment  is  typically  built  
on  top  of a low-level  library,  xlib, which contains the functionality to interact with the X 
server.  The graphical  interface  extends  the  basic functionality of Xll by emitting  the 
window view,  providing  buttons,  menus,  icons,  and  other  options.   
When  working  on Linux systems  through a graphical  interface,  users may  use mouse  
clicks  to  run  applications  or  open  flies,  drag  and  drop  to  copy  files  from one  location  
to  another,  and  so  on. In  addition,  users may invoke  a terminal  emulator  program,  or 
xterm, which  provides  them with the  basic command-line  interface to  the  operating  
system.   
The Shell 
 Although  Linux  systems  have  a  graphical  user  interface,  most  programmers and  
sophisticated  users  still  prefer  a  command-line  interface,  called  the  shell.  
The  shell  command-line  interface  is  much faster  to use,  more powerful, easily  
extensible,  and does  not  give  the user RSI from  having  to  use a mouse all  the  time.  
Below we will briefly describe the bash shell (bash).  It is heavily based on the  original  
UNIX shell, Bourne shell, and  in fact  its  name is  an acronym  for  Bourne Again  Shell.  
Many other shells are also  in  use  (ksh,  csh, etc.), but, bash is the default shell in most 
Linux systems.  
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When  the  shell  starts  up,  it  initializes  itself,  then  types  a  prompt  character, often a 
percent  or  dollar  sign, on the  screen  and waits for  the  user to  type a command line.  
 When the user types a command line, the shell extracts the first word from it, assumes 
it is the name of a program to be run, searches for this program, and if it finds it, runs the 
program. The shell then suspends itself until the program terminates, at which time it tries to 
read the next command. What is important  here  is simply  the  observation  that  the  shell  is  
an  ordinary  user  program.  All it needs is the ability to read from the keyboard and write 
tothe monitor and the power to execute other programs.  
 Commands  may  take  arguments,  which  are  passed  to  the  called  program  as 
character strings. For example, the command line  

cpsrc dest  

Invokes the cp program with two arguments, src and dest.  This program interprets the first 
one to be the name of an existing file.  It makes a copy of this file and calls the copy dest.  

Not all arguments are file names.  In head -20 file the first argument, -20, tells head to print 
the first 20 lines of file, instead of the default number of lines, 10.  Arguments thatcontrol the 
operation of a command or specify an optional value are called flags, and by convention are 
indicated with a dash. The dash is required to  avoid ambiguity, because the command head 
20 file is perfectly  legal, and tells head to first print the  initial  10 lines of a file  called 20, 
and  then  print  the  initial  10 lines  of a second  file  called file.  Most Linux commands 
accept multiple flags and arguments.  

To make it easy to specify multiple file names, the shell accepts magic characters, sometimes 
called  wild cards.  An asterisk, for example, matches  all  possible strings, so  

Is *.C  

tellsls to list all  the files whose name ends in .c.  If files named x.c, y.c, and z.c all exist, the 
above command is equivalent to typing  

Is x.cy.cz.c 

Another  wild  card  is  the  question  mark,  which  matches  any  one  character.  A list of 
characters insidesquare brackets selects any of them, so 

Is [ape]*  

Listsall files beginning with «a",  "p", or  "e".  

A  program  like  the  shell  does  not  have  to  open  the  terminal  in order  to  read  from  it  
or write  to  it. Instead, when  it starts  up,  it  automatically  has  access  to  a  file  called  
standard  input (for reading),  a  file  called  standard  output  (for  writing  normal  output),  
and  a  file called standard error (for writing  error  messages).  Normally,  all  three  default  
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to the  terminal,  so  that  reads  from  standard  input come from  the  keyboard and writes to  
standard  output or  standard  error  go  to  the  screen.  Many  Linux  programs  read from 
standard  input and write  to  standard  output  as  the  default.  For example,  

sort 

invokes  the  sort program,  which reads  lines from  the  terminal  (until  the  user  types a 
CTRL-D,  to  indicate  end  of file),  sorts  them alphabetically,  and  writes  the  result to the  
screen. It is  also  possible to  redirect standard  input and  standard  output,  as  that  is  often  
useful.  The  syntax  for redirecting  standard  input  uses  a less  than  sign  ( <)  followed  by  
the  input  file  name.  Similarly,  standard  output  is  redirected  using  a greater  than  sign  
(> ).  It is permitted to redirect bothin the same command.  For example, the command  

sort<in >OUt 

causes  sort to  take  its  input from  the  file  in and  write  its  output  to  the  file  out. Since  
standard  error  has  not been  redirected,  any  error  messages  go to  the  screen. A program  
that  reads  its  input  from  standard  input,  does  some  processing  on  it, and writes  its  
output to standard  output is called  a filter.  

Consider the following command line consisting of three separate commands:  

sort<in >temp; head -30 <temp; rm temp  

It  first  runs  sort,  taking  the  input from  in and  writing the  output  to  temp.  When that  
has  been  completed,  the  shell  runs  head, telling  it  to  print  the  first  30 lines of temp  
and  print  them  on  standard  output,  which  defaults  to  the  terminal.  Finally, the 
temporary file is removed.  

It frequently  occurs  that the  first  program in  a command line  produces  output that is  
used as  the input  on the  next  program.  In  the  above example,  we  used  the file  temp to  
hold  this  output.  However, Linux provides a simpler construction todo the same thing.  In  

sort<in I head -30  

the  vertical  bar,  called  the  pipe symbol, says  to  take  the  output  from  sort and  useit as  
the  input to head, eliminating  the  need  for  creating,  using,  and  removing  the temporary  
file.  A  collection  of  commands  connected  by  pipe  symbols,  called  a pipeline, may  
contain  arbitrarily  many  commands.  A four-component pipeline isshown by the following 
example:  

grepter *.t I sort I head -20 I tail -5 >foo  

Here  all  the lines  containing  the string  "ter"  in  all the files  ending in  .t are  written to  
standard  output,  where  they  are  sorted.  The  first  20  of these  are  selected  out by head,  
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which  passes  then to tail,  which writes  the  last five (i.e., lines  16 to 20 in the  sorted  list)  
to foo.  This  is an example  of how Linux  provides  basic  building blocks  (numerous  
filters),  each  of  which  does  one job,  along  with  a  mechanism for  them  to  be put 
together  in  almost limitless ways.  

Linux is a general-purpose multiprogramming system.  A single user can run several 
programs at once, each as a separate process.  The shell syntax for running a process in the 
background is to follow its command with an ampersand.  Thus  

we -I <a >b & 

runs  the  word-count  program,  we,  to  count  the  number  of lines  (-1 flag)  m 1ts input,  a, 
writing  the  result  to  b,  but  does  it  in  the  background.  As  soon  as the command  has  
been  typed,  the  shell  types  the  prompt  and  is  ready  to  accept  and handle  the  next  
command.  Pipelines  can  also  be  put  in  the  background,  for  example,  by  

sort<X I head & 

Multiple pipelines can run in the background simultaneously. It is possible to put a list of 
shell commands in a file and then start a shell with this file as standard input.  The (second)  
shell just  processes  them  in  order,  the same  as  it  would  with  commands  typed  on  the  
keyboard.  Files containing shell commands are called shell scripts.  Shell  scripts  may  
assign  values to  shell variables  and  then  read  them  later.  They may also have 
parameters, and use if, for, while, and case constructs.  Thus a shell script is really a program 
written in shell language.  The  Berkeley  C  shell  is  an  alternative  shell  that  has  been  
designed  to make shell  scripts  (and the  command language in general) look like C 
programs  in many  respects.  Since  the  shell  is  just  another  user  program,  other  people  
have written  and distributed  a variety  of other  shells. 

Structure of the Linux kernel.  

   The kernel  sits  directly on the  hardware  and  enables  interactions  with 110 
devices  and  the  memory  management  unit and  controls  CPU  access  to  them.  At the 
lowest level, as shown in Fig.  10-3  it  contains  interrupt  handlers,  which  are  the primary  
way  for  interacting  with  devices,  and  the  low-level  dispatching  mechanism.  This 
dispatching occurs when an interrupt happens.  The  low-level  code  here stops  the running 
process,  saves  its  state  in  the kernel  process structures,  and  starts the  appropriate  driver.  
Process  dispatching  also  happens  when  the  kernel  completes  some  operations  and  it  is  
time  to  start  up  a  user  process  again.  The dispatching code is in assembler and is quite 
distinct from scheduling.  
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Next, we divide the various kernel subsystems into three main components. The I/O 
component in Fig.  10-3 contains all kernel pieces responsible for interacting with devices 
and performing network and storage I/O operations.  At the highest level, the I/O operations 
are all integrated under a Virtual FileSystem layer.  That  is,  at  the  top level,  performing  a 
read  operation  to  a file,  whether  it  is in  memory  or  on  disk,  is  the  same  as  
performing  a read  operation  to  retrieve  a character  from  a  terminal  input.  A  the  lowest  
level,  all  110 operations  pass through  some  device  driver.  All  Linux  drivers  are  
classified  as either  character device  drivers  or  block  device  drivers,  with  the  main  
difference  that  seeks  and random  accesses  are  allowed  on  block  devices  and  not  on  
character  devices. Technically, network devices are really character devices, but they are 
handledsomewhat  differently,  so that  it  is probably  clearer  to  separate  them,  as  has  
been done in  the  figure. Above the device driver level, the kernel code is different for each 
device type.  Character devices may be used in two different ways.  Some programs, such as 
visual editors like vi and emacs, want every key stroke as it is hit. Raw terminal (tty)/O 
makes this possible.  Other  software,  such  as  the  shell,  is  line  oriented, and  allows  users  
to  edit  the  whole  line  before  hitting ENTER  to send it to  the  program. In  this  case  the 
character  stream  from  the  terminal  device  is  passed  through a so  called  line discipline,  
and appropriate formatting is applied.  
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Networking software is often modular, with different devices and protocols supported. The 
layer above the network drivers handles a kind of routing function, making  sure  that  the  
right  packet  goes  to  the  right  device  or  protocol  handler. Most  Linux  systems  contain  
the  full functionality of a  hardware  router within  the kernel,  although the  performance  is 
less  than that of a hardware  router.  Above  the router  code  is  the  actual  protocol  stack,  
always  including  IP  and  TCP,  but  also many  additional  protocols.  Overlaying  all  the  
network  is  the  socket  interface, which  allows  programs  to  create  sockets  for  particular  
networks  and  protocols, getting back  a file descriptor for each  socket to  use  later.  
On  top  of the  disk  drivers is the  1/0 scheduler,  which  is responsible for  ordering  and  
issuing  disk  operation  requests  in  a  way  that  tries  to  conserve  wasteful disk  head  
movement or  to  meet  some  other system  policy.  
At  the  very  top  of  the  block  device  column  are  the  file  systems.  Linux may have, and 
it does in fact, multiple file systems coexisting concurrently.  In order to hide  the  gruesome  
architectural  differences  of various  hardware  devices  from  the file  system  
implementation,  a  generic  block  device  layer  provides  an  abstraction used by  all  file  
systems.  
To the right in are  the  other  two  key  components  of the  Linux kernel. These are 
responsible for the memory and process management tasks.  Memory  management  tasks  
include  maintaining  the  virtual  to  physical  memory  mappings,  maintaining  a  cache  of  
recently  accessed  pages  and  implementing  a  good page  replacement  policy,  and  on-
demand  bringing  in  new  pages  of  needed  code and data into  memory.  
The  key  responsibility  of the process  management  component is  the  creation and  
termination  of  processes.  It  also  includes  the  process  scheduler,  which chooses  which  
process  or,  rather,  thread  to  run  next.  As  we  shall  see  in  the  next section,  the  Linux  
kernel  treats  both  processes  and  threads  simply  as  executable entities,  and  will schedule 
them  based  on  a global scheduling  policy. Finally, code for signal handling also belongs to 
this component.  

While  the  three  components  are  represented  separately  in  the  figure,  they  are highly  
interdependent.  File systems typically access files through the block devices. However,  in  
order  to  hide  the large  latencies  of disk  accesses, files  are  copied  into  the  page  cache  
in  main  memory.  Some  files  may  even  be  dynamically created  and  may  only  have  an  
in-memory  representation,  such  as  files  providing. 

Some runtime resource usage information.  In addition,  the  virtual  memory  system may  
rely  on a disk partition or in-file  swap area  to back  up parts  of the  main  memory  when  it  
needs  to  free  up  certain  pages,  and  therefore  relies  on  the  I/0  component. Numerous 
other interdependencies exist.  

In  addition  to  the  static  in-kernel  components,  Linux  supports  dynamically loadable  
modules. These  modules can  be  used  to  add  or replace  the default device drivers,  file  
system,  networking,  or  other  kernel  codes.  The modules are not shown in Fig.  10-3. 
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Finally,  at  the very  top  is  the  system  call  interface  into the  kernel.  All  system calls  
come here,  causing a trap  which  switches  the  execution  from user  mode  into protected  
kernel  mode  and  passes  control  to  one  of  the  kernel  components  described  above. 

 

Discuss Linux scheduling.  

Linux threads are kernel threads, so scheduling is based on threads, not processes. Linux 
distinguishes three classes of threads for scheduling purposes:  

1. Real-time FIFO.  
2. Real-time round robin.  
3. Timesharing. 

Real-time FIFO  threads  are  the highest priority  and are  not preemptable  except by a 
newly readied  real-time  FIFO  thread  with  higher priority. Real-time round-robin threads  
are  the  same  as  real-time  FIFO  threads  except  that they  have  time  quanta associated  
with  them,  and  are  preemptable  by  the  clock.  If  multiple  real-time round-robin  threads  
are  ready,  each  one is run for its  quantum,  after  which  it  goes to  the  end  of the  list  of  
real-time  round-robin  threads.  Neither of these classes is actually real time in any sense.  
Deadlines cannot be specified and guarantees are not given.  These  classes  are  simply  
higher  priority  than  threads  in  the  standard timesharing  class.  The  reason  Linux  calls  
them  real  time  is  that  Linux  is  conformant  to  the  P1003.4 standard  ("real-time"  
extensions  to  UNIX)  which  uses  those names. The real-time  threads  are internally 
represented  with priority  levels from 0 to 99,  0 being the highest and  99  the lowest real-
time  priority  level.  

The  conventional,  non-real-time  threads  are  scheduled  according  to  the  following  
algorithm.  Internally,  the non-real-time threads  are  associated  with  priority levels  from  
100  to  139,  that  is,  Linux  internally  distinguishes  among  140  priority levels. As  for  
the  real-time  round  robin threads,  Linux  associates  time  quantum  values for  each  of the  
non-real-time priority  levels.  The  quantum  is  the  number  of  clock  ticks  the  thread  may  
continue  to run  for.  In  the  current  Linux  version,  the  clock  runs  at  1000Hz  and  each  
tick  is lms,  which is called  a jiffy. 

Like most UNIX systems, Linux associates a nice value with each thread.  The default  is  0,  
but this can  be changed  using the  nice(value) system call,  where  value ranges  from  -20  
to  +19.  This value determines the static priority of each thread. 

A key data structure used by the Linux scheduler is a runqueue.  A runqueue is  associated  
with each  CPU  in the  system,  and  among other  information,  it maintains  two  arrays,  
active and expired.  As shown in Fig.  10-10, each of these fields is a pointer to an array of 
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140 list heads, each corresponding to a different priority. The  list  head  points  to  a  doubly  
linked  list  of  processes  at  a  given  priority.   
The scheduler selects a task from the highest-priority active array.  If  that task's  timeslice  
(quantum)  expires,  it  is  moved  to  an  expired  list  (potentially  at  a different  priority  
level).  If the  task  blocks,  for  instance  to  wait  on  an  1/0 event, before  its  time slice  
expires,  once  the  event occurs and  its  execution  can  resume,  it is  placed  back  on  the  
original  active  array,  and  its  timeslice  is  decremented  to reflect  the CPU  time  it already  
consumed.  Once its timeslice is 
 

 

Fully exhausted, it too will be placed on an expired array.  When there  are  no  more tasks in 
any  of  the active arrays,  the  scheduler  simply  swaps  the pointers,  so  the  expired  arrays  
now become  active,  and  vice  versa.  This method ensures that low-priority tasks will not 
starve. 
Different priority levels are assigned different timeslice values.  Linux assigns higher quanta 
to higher-priority processes.  For  instance,  tasks  running  at  priority level  100  will  
receive time  quanta  of  800  msec,  whereas  tasks  at  priority  level  of 139 will  receive 5  
msec.  
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The  idea  behind  this  scheme  is  to  get  processes  out  of the  kernel  fast.  If  a process  is  
trying  to  read  a  disk  file,  making  it  wait  a  second  between  read  calls will  slow  it  
down  enormously.  It  is  far  better  to  let it run  immediately  after  each request  is 
completed,  so  that it can  make  the next one  quickly.  Similarly,  if a process  was  blocked  
waiting  for  keyboard  input,  it  is  clearly  an  interactive  process, and  as  such  should be 
given a high priority  as  soon  as it is ready  in order to ensure that  interactive  processes  get  
good  service.  In  this  light,  CPU-bound  processes basically  get  any  service  that  is left  
over  when  all  the  110 bound  and  interactive processes  are blocked.  
Since Linux  does  not know  a priori whether a task  is I/O-or CPU-bound,  it  relies  on  
continuously  maintaining  interactivity  heuristics.  In this manner, Linux distinguishes 
between static and dynamic priority. The threads' dynamic priority is continuously 
recalculated,  so  as  to  
 
 (1)  Reward interactive threads, and  

(2) Punish CPU-hogging threads.  

The maximum priority bonus is -5, since lower-priority values correspond to higher priority 
received by the scheduler. The maximum priority penalty is +5.  

More  specifically,  the  scheduler  maintains  a  sleep_avg  variable  associated with  each  
task.  Whenever  a task is awakened,  this  variable  is incremented,  whenever  a  task  is  
preempted  or  its  quantum  expires,  this  variable  is  decremented  by the  corresponding  
value.  This  value  is  used  to  dynamically  map  the  task's bonus to values  from  -5  to  +5.  
The Linux  scheduler  recalculates the new priority  level as  a thread  is moved from the  
active  to  the  expired  list.  
In  addition,  the  scheduler  includes  features  particularly  useful  for  multiprocessor  or 
multicore platforms.  First,  the runqueue  structure  is  associated  with  each CPU  in  the  
multiprocessing  platform.  The  scheduler  tries  to  maintain  benefits from  affinity  
scheduling,  and  to  schedule  tasks  on  the  CPU  on  which  they  were previously  
executing.  Second,  a  set  of system  calls  is  available  to  further  specifyor  modify  the 
affinity  requirements  of  a select  thread.  Finally, the  scheduler  performs  periodic  load  
balancing  across  runqueue of  different  CPUs  to  ensure  thatthe  system  load is  well  
balanced,  while  still  meeting  certain  performance  or  affinity  requirements.  
The  scheduler  considers  only  runnable  tasks,  which  are  placed  on  the  appropriate  
runqueue.  Tasks  which  are  not runnable  and  are  waiting on various  I/0 operations  or  
other  kernel  events  are placed  on  another  data  structure,  waitqueue.  
A waitqueue is associated with each event that tasks may wait on. The head of the waitqueue 
includes a pointer to a linked list of tasks and a spinlock.  The  spinlock is  necessary  so as  
to  ensure  that  the  waitqueue  can  be  concurrently  manipulated through  both  the  main  
kernel  code  and  interrupt  handlers  or  other  asynchronous invocations.  
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In  fact,  the  kernel  code  contains  synchronization  variables  in  numerous  locations.  
Earlier Linux kernels had just one big kernel lock (BLK).  This  proved highly  inefficient,  
particularly  on  multiprocessor  platforms,  since  it  prevented processes  on  different  CPUs  
from  executing  kernel  code  concurrently.  Hence, many new synchronization points were 
introduced at much finer granularity. 

Write short notes on Linux NFS.  

NFS Architecture 
 The basic idea behind NFS isto allow an arbitrary collection ofclients and servers to 
share a common file system.  In many cases, all the clients and servers are on the same LAN, 
but this is not required.  It is also possible to run NFS over a wide area network if the server 
is far from the client.   
Each NFS server exports one or more of its directories for access by remote clients.  When a 
directory is made available, so are all of its subdirectories, so in fact, entire directory trees are 
normally exported as a unit. The list of directories a server exports is maintained in a file, 
often /etc/exports, so these directories can be exported automatically whenever the server is 
booted. Client’s access exported directories by mounting them.  When a client mounts a 
(remote) directory, it becomes part of its directory hierarchy, as shown in . 
 In this example, client 1 has mounted the bin directory of server 1 on its own bin 
directory, so it can now refer to the shell as /binlsh and get the shell on server 1. Diskless 
workstations often have only a skeleton file system (in RAM) and get all their files from 
remote servers like this. Similarly, client 1 has mounted server 2's directory! Projects on its 
directory /usrlast/work so it can now access file a as /usr!ast/worklprojl!a.  Finally, client 
2has also mounted the projects directory and can also access file a, only as lmntlprojl!a.  As 
seen here, the same file can have different names on different clients due to its being mounted 
in a different place in the respective trees.  The mount point is entirely local to the clients; the 
server does not know where it is mounted on any of its clients. 
 
NFS Protocols 
 Since one of the goals of NFS is to support a heterogeneous system, with clients and 
servers possibly running different operating systems on different hardware, it is essential that 
the interface between the clients and servers be well defined. Only then is it possible for 
anyone to be able to write a new client implementation and expect it to work correctly with 
existing servers, and vice versa. 
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NFS accomplishes this goal by defining two client-server protocols.  A protocol  is  a set  of 
requests  sent by  clients  to  servers,  along  with  the  corresponding replies sent by the 
servers back to the clients.  

The first NFS protocol handles mounting.  A client can send a path name to a server and 
request permission to mount that directory somewhere in its directory hierarchy. The place 
where it is to be mounted is not contained in the message, as the server does not care where it 
is to be mounted.  If the path name is legal and the directory specified has been exported, the 
server returns a file handle to the client. The file handle contains fields uniquely identifying 
the file system type, the disk, the i-node number of the directory, and security information.  
Subsequent calls to read and write files in the mounted directory orany of its subdirectories 
use the file handle.  

When  Linux  boots,  it  runs  the /etc/rc  shell  script  before  going  multiuser. Commands to 
mount remote file systems can be placed in this script, thus automatically mounting the 
necessary remote file systems before allowing any logins.  

Alternatively, most versions of Linux also support automounting.  This feature allows a set of 
remote directories to be associated with a local directory. None of these remote directories 
are mounted (or their servers even contacted) when the client is booted. Instead, the first time 
a remote file is opened, the operating system sends a message to each of the servers. The first 
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one to reply wins, and its directory is mountedAutomounting has two principal advantages 
over static mounting via the 

/etc/rc  file. First,  if one  of the  NFS  servers named in /etc/rc happens to be down,  

it is impossible to bring the client up, at least not without some difficulty, delay, and quite a 
few error messages.  If the user does not even need that server at the moment, all that work is 
wasted. Second, by allowing the client to try a set of servers in parallel, a degree of fault 
tolerance can be achieved (because only one of them needs to be up), and the performance 
can be improved (by choosing the first one to reply-presumably the least heavily loaded).  

On the other hand, it is tacitly assumed that all the file systems specified as alternatives for 
the automount are identical. Since NFS provides no support for file or directory replication, it 
is up to the user to arrange for all the file systems to be the same. Consequently, 
automounting is most often used for read-only file systems containing system binaries and 
other files that rarely change.  

The second NFS protocol is for directory and file access.  Clients can send messages to 
servers to manipulate directories and read and write files.  They can also access file attributes, 
such as file mode, size, and time of last modification. Most Linux system calls are supported 
by NFS, with the perhaps surprising exceptions of open and close.  

The omission of open and close is not an accident.  It is fully intentional.  It is not necessary 
to open a file before reading it, or to close it when done. Instead, to read a file,  a client sends 
the  server  a lookup message  containing  the  file name, with a request to look it up and 
return a file handle, which is a structure that identifies  the file  (i.e.,  contains  a file  system  
identifier  and  i-node  number,  among other data).  Unlike an open call, this lookup 
operation does not copy any information into internal system tables.  The read call contains 
the file handle of the file to read, the offset in the file to begin reading, and the number of 
bytes desired.  

Each such message is self-contained.  The  advantage  of this  scheme  is  that  the server  
does  not  have  to remember  anything  about  open  connections in  between calls to it. Thus 
if a server crashes and then recovers, no information about open files is lost, because there is 
none.  A server like this that does not maintain state information about open files is said to be 
stateless.  

Unfortunately, the NFS method makes it difficult to achieve the exact Linux file semantics.  
For  example,  in  Linux  a file  can  be  opened  and  locked  so  that other  processes  cannot 
access  it.  When thefile is closed, the locks are released.  

In a stateless server such as NFS, locks cannot be associated with open files, because the 
server does not know which files are open.  NFS therefore needs a separate, additional 
mechanism to handle locking. 
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NFS Implementation 
Although the implementation of the client and server code is independent of the NFS 
protocols, most Linux systems use a three-layer implementation similar to that of Fig. 10-36.  
The top layer is the system call layer. This handles calls like open, read, and close.  After 
parsing the call and checking the parameters,  it invokes the second layer, the Virtual File 
System (VFS) layer. 

 

The task of the VFS layer is to maintain a table with one entry for each open file.  The VFS 
layer has an entry, a virtual i-node, or v-node, for every  open file. V -nodes  are  used  to tell  
whether  the file  is local  or remote.  For remote  files, enough information is provided to be 
able to access them. For local files,  the file system and i-node are recorded because modem 
Linux systems can support multiple file  systems  (e.g., ext2fs,  /proc,  FAT,  etc.).  Although 
VFS  was invented to support NFS, most modern Linux systems  now support it as an 
integral part of the operating system, even if NFS is not used.  
 To see how v-nodes  are  used, let us trace  a sequence  of mount,  open,  and read  
system  calls.  To mount a remote file  system,  the system administrator  (or /etc/rc) calls  the 
mount program  specifying  the remote  directory,  the  local  directory  on  which  it  is  to  
be  mounted,  and  other  information.  The  mount program parses  the  name  of the remote  
directory  to  be  mounted  and  discovers  the name  of the  NFS  server  on  which the 
remote  directory is located.  It then  contactsthat machine,  asking for a file  handle for  the 
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remote directory.  If the  directory  exists  and is  available  for  remote  mounting,  the  server 
returns a file  handle for  the  directory.  
 Finally, it makes  a mount system call,  passing  the handle to the kernel. The kernel  
then  constructs  a v-node for the remote directory and asks the  NFS client  code  in  Fig.  10-
36 to create  an  r-node (remote i-node) in  its  internal  tables to  hold the  file  handle.  The  
v-node points  to  the  r-node.  Each  v-node  in  the  VFS layer  will  ultimately  contain  
either  a  pointer  to  an  r-node in the  NFS  client  code, or a pointer to an i-node in  one of 
the local  file  systems  (shown as dashed lines in Fig.  10-36).  Thus  from  the v-node it is 
possible  to  see if a file or directory  is local or  remote.  If it is local,  the  correct  file  
system  and  i-node  can  be located.  If it is remote,  the remote  host and file handle can be 
located.  
 When  a  remote  file  is  opened  on  the  client,  at  some  point  during  the  parsing 
of the path  name,  the  kernel  hits  the  directory  on  which the  remote  file  system  is 
mounted.  It sees  that  this  directory  is  remote  and  in  the  directory's  v-node finds the  
pointer  to  the  r-node.  It  then  asks  the  NFS  client  code  to  open  the  file.  The NFS  
client  code  looks  up  the  remaining  portion  of the  path  name  on  the  remote server  
associated  with  the  mounted  directory  and  gets back  a file  handle  for it.  It makes  an  r-
node for  the  remote file in  its  tables and reports  back  to  the VFS  layer, which puts in its 
tables a v-node for the file that points to the r-node. Again here we  see  that every  open file  
or directory  has  a v-node  that points to  either  an r-node or an i-node.  
 The caller is given a file descriptor for the remote  file. This file descriptor is mapped 
onto the  v-node by tables  in the  VFS  layer.  Note that no table entries are made on the  
server  side.  Although  the  server  is  prepared  to  provide  file  handles upon request,  it 
does  not keep  track  of which files happen  to have file handles outstanding  and  which  do  
not.  When  a  file  handle  is  sent  to  it  for  file  access,  it checks  the  handle,  and  if it  is  
valid,  uses  it.  Validation can  include  verifying  an authentication  key contained in  the  
RPC headers,  if security is enabled.  
When  the  file  descriptor  is  used  in  a  subsequent  system  call,  for  example, read, the  
VFS  layer  locates  the  corresponding  v-node,  and  from  that  determines whether  it  is  
local  or  remote and  also  which  i-node  or r-node  describes  it.  It  then sends  a message  
to  the  server  containing the  handle,  the file offset (which  is  maintained  on  the  client  
side,  not  the  server  side),  and  the  byte  count.  For  efficiency reasons,  transfers  between  
client  and  server  are  done  in  large  chunks,  normally 8192 bytes, even if fewer  bytes  are 
requested.  
When  the  request  message  arrives  at  the  server,  it is passed  to  the  VFS  layer there,  
which  determines  which  local  file  system  holds the  requested  file.  The  VFS layer  then  
makes  a call  to  that local file  system  to read  and  return  the  bytes.  These data are  then  
passed  back  to  the  client.  After the  client's  VFS layer has  gotten  the8-KB chunk it  
asked  for,  it automatically  issues  a request for  the  next chunk,  so  it will  have  it  should  
it  be  needed  shortly.  This  feature,  known  as  read  ahead, improves performance  
considerably.  
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 For writes  an  analogous path  is followed from  client to  server.  Also,  transfers are  
done in  8-KB chunks  here  too.  If a write system  call  supplies fewer than  8 KB bytes  of 
data,  the  data  are  just  accumulated  locally.  Only  when  the  entire  8-KB chunk is full is 
it  sent to the  server.  However,  when a  file  is closed,  all of its data are sent  to  the server  
immediately.  
 Another  technique  used  to  improve  performance  is  caching,  as  in  ordinary 
UNIX.  Servers  cache  data  to  avoid  disk  accesses,  but  this  is  invisible  to  the  clients. 
Clients maintain  two  caches,  one for file  attributes  (i-nodes) and  one for  file data.  When  
either  an  i-node  or a file  block  is  needed,  a check  is  made  to  see  if it can be satisfied  
out of the  cache.  If so, network traffic  can  be  avoided.  
While client caching helps performance enormously,  it also introduces some nasty problems.  
Suppose  that two  clients are  both  caching  the same  file  block and that  one  of them  
modifies  it.  When  the  other  one  reads  the block,  it gets  the  old (stale)  value.  The 
cache is  not  coherent.  
 Given  the  potential  severity  of  this  problem,  the  NFS  implementation  does 
several  things  to  mitigate  it.  For  one,  associated  with  each  cache  block  is  a  timer.  
 When  the  timer  expires,  the  entry  is  discarded.  Normally,  the  timer  is  3  sec  
for data  blocks  and  30  sec  for  directory  blocks.  Doing  this  reduces  the  risk  somewhat.  
In  addition,  whenever  a cached file  is  opened,  a message  is  sent  to  the  server  to  find  
out when  the  file  was  last modified.  If  the  last  modification  occurred after  the  local  
copy  was  cached,  the  cache  copy  is  discarded  and  the  new  copy fetched  from  the  
server.  Finally,  once every  30  sec  a cache  timer  expires,  and  all the  dirty  (i.e., 
modified)  blocks  in  the  cache  are  sent  to  the  server.  While  not  perfect,  these  patches  
make  the  system  highly  usable in  most  practical  circumstances. 
 WINDOWS REGISTRY.  
 Windows attaches a special kind of file system (optimized for small files) to the NT 
namespace.  This file system is called the registry.  The registry is organized into separate 
volumes called hives.  Each hive is kept in a separate file (in the directory C:\ 
Windows\system32\config\ of the boot volume).  When a Windows system boots, one 
particular hive named SYSTEM is loaded into memory by the same boot program that loads 
the kernel and other boot files, such as boot drivers, from the boot volume. 
Windows keeps a great  deal of crucial information in  the SYSTEM  hive, including 
information about what drivers to use with what devices, what software to run  initially, and  
many parameters  governing the  operation  of  the  system.  This information is used even by 
the boot program itself to determine which drivers are boot drivers, being needed 
immediately upon boot.  Such drivers include thosethat understand the file system and disk 
drivers for the volume containing the operating system itself.  
 Other configuration hives are used after the system boots to describe information 
about the software installed on the system, particular users, and the classes of user-mode 
COM (Component Object-Model) objects that are installed on the system.  Login information 
for local users is kept in the SAM (Security Access Manager) hive. Information for network 
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users is maintained by the [sass service in the SECURITY hive, and coordinated with the 
network directory servers so that users can have a common account name and password 
across an entire network. A list of the hives used in Windows Vista is shown . 
 The registry gathers these files into a central store, which is available early in the 
process of booting the system.  This is important for implementing Windows plug-andplay 
functionality.  But  the  registry  has  become  very disorganized  as  Windows has  evolved.  
There are poorly defined conventions about how the configuration information should be 
arranged, and many applications take an ad hoc approach.  

 Most  users,  applications, and  all drivers  run with  full  privileges,  and frequently 
modify  system  parameters  in  the  registry  directly-sometimes  interfering  with each other 
and destabilizing the system. 

 

The registry is a strange cross between a file system and a database, and yet really unlike 
either.   
To explore the registry Windows has a GUI program called regedit that allows you to open 
and explore the directories (called keys) and data items (called values).   
Procmon watches all the registry accesses that take place in the system and is very 
illuminating.  Some programs will access the same key over and over tens of thousands of 
times.  
As  the  name  implies, regedit  allows  users  to  edit  the  registry-but  be  very careful if you  
ever do.  It  is  very  easy  to  render  your  system  unable  to  boot, or damage the installation 
of applications so that you cannot fix them without a lot of wizardry.   
Beginning  with  Windows  Vista  Microsoft  has  introduced  a  kernel-based transaction  
manager with support for  coordinated transactions that span both file system and registry 
operations.  Microsoft plans to use this facility in the future to avoid some of the metadata 
corruption problems that occur when software installation does not complete correctly and 
leaves around partial state in the system directories and registry hives.  
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The registry is accessible to the Win32 programmer.  There are calls to create and delete 
keys, look up values within keys, and more.  Some of the more useful ones are listed in Fig. 
11-12. 

 

When the system is turned off, most of the registry information is stored on the disk in the 
hives.  Because their integrity is so critical to correct system functioning, backups are made 
automatically and metadata writes are flushed to disk to prevent corruption in the event of a 
system crash.  Loss of the registry requires reinstalling all software on the system. 
Write note on Job, Process, threads and Fiber management API calls.  
New processes are created using the Win32 API function CreateProcess. This function has 
many parameters and lots of options.  It takes the name of the file to be executed, the 
command-line strings (unparsed), and a pointer to the environment strings.  There are also 
flags  and values that control many details such as how security is configured for the process 
and first thread,  debugger configuration, and scheduling  priorities.  A flag also specifies 
whether open handles in the creator are to be passed to the new process. The  function also  
takes  the  current working  directory for the  new  process  and  an optional  data structure  
with information about the GUI Window the process is to use.  Rather than returning just a 
process ID for the new process, Win32 returns both handles and IDs, both for the new 
process and for its initial thread.  
The large number of parameters reveals a number of differences from the design of process 
creation in UNIX. 

1. The actual search path for finding the program to execute is buried in the library code 
for Win32, but managed more explicitly in UNIX.  

2. The current working directory is a kernel-mode concept in UNIX but a user-mode 
string in Windows.  Windows does open a handle on the current directory for each 
process, with the same annoying effect as in UNIX: You cannot delete the directory, 
unless it happens to be across the network, in which case you can delete it.  

3. UNIX  parses  the command line  and  passes  an array  of parameters, while Win32 
leaves  argument parsing  up  to  the individual program. As a consequence, different 
programs may handle wildcards (e.g., *.txt) and other special symbols in an 
inconsistent way.  
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4. Whether file descriptors can be inherited in UNIX is a property of the handle.  In 
Windows it is a property of both the handle and a parameter to process creation.  

5. Win32 is GUI-oriented, so new processes are directly passedinformation abouttheir 
primary window, while this information is passed as parameters to GUI applications 
in UNIX.  

6. Windows  does  not  have  a  SETUID  bit  as  a  property  of  the  executable, but one 
process can create  a process that runs as a different user, as long as it can obtain a 
token with  that  user's credentials.  

7. The process and thread handle returned from Windows can be used to modify the new 
process/thread in many substantive ways, including duplication of handles and setting 
up the environment variables in the new process.  UNIX just makes modifications to 
the new process between the fork and exec calls. 

Some of these differences are historical and philosophical.  UNIX  was  designed  to  be  
command-line-oriented  rather  than  Gill-oriented  like  Windows.  
UNIX users are more sophisticated, and understand concepts like PATH variables. Windows 
Vista inherited a lot of legacy from MS-DOS.  
The  comparison  is  also  skewed  because  Win32  is  a  user-mode  wrapper around  the  
native  NT  process  execution,  much  as  the  system  library  function wraps fork/exec in 
UNIX.  The actual NT system calls for creating processes and threads, NtCreateProcess and 
NtCreateThread, are much simpler than the Win32 versions.  The  main  parameters to NT 
process creation are a handle on a section representing the program file to run,  a flag  
specifying  whether  the new process should, by default, inherit handles from the creator,  and 
parameters related to the security model.  All the details of setting up the environment strings,  
and creating the initial  thread,  are  left to user-mode  code  that can  use  the  handle  on the  
new process to manipulate its virtual address space directly.  
To  support  the POSIX  subsystem,  native  process  creation  has an  option to create a new  
process by copying the virtual address space of another process rather than mapping a section  
object for a new program.  This is only used to implement fork for POSIX, and not by 
Win32.  
Thread creation passes the CPU context to use for the new thread  (which includes  the  stack 
pointer and initial  instruction pointer), a template  for  the TEB,and a flag  saying  whether 
the thread  should be immediately run  or created  in  a suspended  state  (waiting for  
somebody to  call  NtResumeThread  on its handle). Creation of the user-mode stack and 
pushing of the argvlargc parameters is left to user-mode code calling  the native NT memory 
management  APis on the process handle.  

In the Windows Vista release,  a new native  API  for  processes was included which  moves 
many of the  user-mode steps into the kernel-mode executive,  and combines process creation 
with creation of the initial  thread.  The reason for the change was to support the use of 
processes as security boundaries.  Normally, all processes created by a user are considered to 
be equally trusted.  It is the user, as represented by a token that determines where the trust 
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boundary is.  This change in  Windows  Vista  allows  processes  to  also  provide  trust  
boundaries,  but  this means  that  the creating  process  does  not have sufficient rights 
regarding  a new process handle to implement the details of process creation in user mode. 

Write note on Process and Threads in SYMBIAN os.  

Symbian OS is a multitasking operating system that uses the concepts of processes and 
threads much like other operating systems do. However, the structure of the  Symbian  OS 
kernel  and  the  way  it  approaches  the  possible  scarcity  of  resources influences the way 
that it views these multitasking objects. 

Threads and Nano threads 

Instead of processes as the basis for multitasking, Symbian OS favors threads and is built 
around the thread concept.  Threads form the central unit of multitasking. A  process  is  
simply  seen  by  the  operating  system  as  a  collection  of threads with a process control 
block and some memory space.  
Thread support in Symbian OS is based in the nanokernel with nanothreads. The nanokernel 
provides only simple thread support; each thread is supported by a nanokernel-based 
nanothread.  The nanokernel provides for nanothread scheduling, synchronization, and timing 
services.  Nanothreads  run  in privileged  mode  and need a  stack  to  store  their  run-time  
environment data. Nanothreads cannot run in user mode. This fact means that the operating 
system can keep close, tight control over each one. Each  nanothread  needs  a very  minimal  
set  of data to  run:  basically,  the location  of its  stack  and how  big that stack is. The  
operating  system keeps  control  of everything  else,  such  as  the code each thread  uses,  
and  stores a thread's context on its run-time stack. Nanothreads have thread states like 
processes have states. The model used by the Symbian OS nanokernel adds a few states to the 
basic model.  In addition to the basic states, nanothreads can be in the following states: 

1. Suspended.  This is  when  a thread  suspends  another thread and  is  meant to be 
different  from the waiting state,  where a thread  is blocked by some upper layer 
object (e.g., a Symbian OS thread).  

2. Fast Semaphore Wait. A thread in this state is waiting for a fast semaphore a type of 
sentinel variable to be signaled.  Fast semaphores are nanokernel level semaphores.  

3. DFC Wait.  A thread in this state is waiting for a delayed function call or DFC to be 
added to the DFC queue.  DFCs are used in device driver implementation.  They  
represent  calls  to  the  kernel  that  can  be  queued  and scheduled for execution by 
the Symbian OS kernel  layer.  

4. Sleep.  Sleeping  threads  are  waiting  for  a  specific  amount  of  time  to elapse.  
5. Other.  There  is a generic  state  that  is used  when  developers  implement extra  

states  for  nanothreads.  Developers do this when they extend the nanokernel 
functional for new phone platforms (called personality layers). Developers who do 



                                                                                                   UNIT V 

 

Operating Systems Page 21 

 

this must also implement how states are transitioned to and from their extended 
implementations. 

A nanothreadis essentially anultra-light-weight process.  It has  a mini-context  that 
getsswitched  as  nanothreads  get moved onto  and  out of the  processor.  Each nanothread 
has a state, as do processes.  The keys to nanothreads are the tight control that the nanokernel 
has over them and the minimal data that make up the context of each one.  

Symbian OS threads build upon nanothreads; the kernel adds support beyond what the 
nanokernel provides.  User mode threads that are used for standard applications are 
implemented by Symbian OS threads.  Each Symbian OS thread contains ananothread and 
addsits own run-time stack to the stack the nanothread uses. Symbian OS threads can operate 
in kernel mode via system calls.  Symbian OS also add exception handling and exit signaling 
to the implementation.  
Symbian OS threads implement their own set of states on top of the nanothread 
implementation.  Because Symbian OS threads add some functionality to the minimal 
nanothread implementation, the new states reflect the new ideas built into Symbian OS 
threads.  Symbian OS adds seven  new states  that Symbian OS threads  can  be  in, focused 
on  special  blocking  conditions that can  happen  to  a Symbian OS thread. These special 
states include waiting and suspending on (normal) semaphores, mutex variables, and 
condition variables.  Remember  that,  because  of the implementation  of Symbian OS 
threads on top of nanothreads, these states  are  implemented  in  terms  of  nanothread  states,  
mostly  by  using  the suspended nanothread state in various ways. 
Processes 
Processes  in  Symbian  OS,  then,  are  Symbian  OS  threads  grouped together under a 
single  process control block structure with a single memory space. There may be only a 
single thread of execution or there may be many threads less than one process control block.  
Scheduling a process, then, is really implemented byscheduling a thread and initializing the 
right process control block to use for its data needs. Symbian OS threads organized under a 
single process work together in several ways.  First, there is a single main thread that is 
marked as the starting point for the process.  Second, threads share scheduling parameters.  
Changing parameters, that is, the method of scheduling, for the process changes the 
parameters for all threads.  Third, threads share memory space objects, including device and 
other object descriptors.  Finally, when a process is terminated, the kernel terminates all 
threads in the process. 
Active Objects 
Active objects are specialized forms of threads, implemented in a a way as to lighten the 
burden they place on the operating environment. Since Symbian OS is focused on 
communication, manyapplications have a similar pattern of implementation:  they write data 
to a communication socket or send information through a pipe, and then they block as they 
wait for a response from the receiver.  Active  objects are designed so that when they  are  
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brought back from this blocked  state,  they have a single entry  point  into  their code  that is  
called.  This simplifies their implementation.  
Since they run in user space, active objects have the properties of Symbian OS threads. As 
such they have their own nanothread and can join with other Symbian OS threads to form a 
process to the operating system. If active objects are just Symbian OS threads, one can ask 
what advantage the operating system gains from this simplified thread model.  The key to 
active objects is in scheduling. While waiting for events, all active objects reside within a 
single process andcan act as a single thread to the system.  The kernel does not need to 
continually check each active object to see if it can be unblocked.  Active objects in a single 
process, therefore, can be coordinated by a single scheduler implemented in a single thread. 
By combining code that would otherwise be implemented as multiple threads into one thread, 
by building fixed entry points into the code, and by using a single scheduler to coordinate 
their execution, active objects form an efficient and lightweight version of standard threads.  
It is important to realize where active objects fit into the Symbian OS process structure. 
When a conventional thread makes a system call that blocks its execution while in the 
waiting state, the operating system still needs to check the thread. Between context switches, 
the operating system will spend time checking blocked processes in the wait state, 
determining if any needs to move to the ready state.  
Active objects place themselves in the wait state and wait for a specific event. Therefore,  the 
operating  system  does  not  need to check  them  but  moves  them when  their specific  
event  has been  triggered.  The result is less thread checking and faster performance 

Interprocess Communication 
In a multithreaded environment like Symbian OS, interprocess communication is crucial to 
system performance.  Threads, especially in the form of system servers, communicate 
constantly.  
A socket is the basic communication model used by Symbian OS.  It is an abstract 
communication pipeline between two endpoints. The abstraction is used to hide both the 
methods oftransport and the management of data between the endpoints. The  concept of a 
socket is  used  by Symbian OS  to  communicate  between  clients  and  servers,  from  
threads  to  devices,  and  between  threads  themselves.  
The socket model also forms the basis of device VO. Again abstraction is the key to making 
this model so useful. All the mechanics of exchanging data with a device are managed by the 
operating system rather than by the application.  Forexample, sockets that work over TCP/IP 
in a networking environment can be easily adapted to work over a Bluetooth environment by 
changing parameters in the type of socket used. Most of the rest of the data exchange work in 
such a switchover is done by the operating system.  
Symbian  OS  implements  the  standard  synchronization  primitives  that  one would  find in 
a general purpose operating  system. Several forms of semaphores and mutexes are in wide 
use across the operating system. These provide for synchronizing processes and threads. 


