Code No. 2009

Max. Marks : 75

## **FACULTY OF ENGINEERING**

B.E. 2/4 I – Semester (Suppl.) Examination, May 2013

## Subject : Mathematics – III (Common to All Except I.T.)

# Time : 3 hours

### Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

#### PART – A (25 Marks)

| 1. F<br>z                                                                                    | Find a partial differential equations by eliminating arbitrary constants a and b from $z = ax + by + a^2b^2$ .     |   |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 2. S                                                                                         | Solve pq = xy.                                                                                                     | 2 |  |  |  |
| 3. F                                                                                         | Fourier series expansion of an odd function in (- $\ell$ , $\ell$ ) has only terms.                                |   |  |  |  |
| 4. T                                                                                         | The half range sine series for $f(x) = 1$ in $(0, \overline{A})$ , is                                              |   |  |  |  |
| 5. W<br>he                                                                                   | . Write the equations of the one dimensional heat flow and two dimensional steady state heat flow.                 |   |  |  |  |
| 6. S                                                                                         | 6. Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial t}$ , given u(0, t) = 8e <sup>-3t</sup> . 3 |   |  |  |  |
| 7. E                                                                                         | 7. Explain Bisection method.                                                                                       |   |  |  |  |
| 8. lf                                                                                        | 8. If $f(x) = 3x^3 - 2x^2 + 1$ , then find $\Delta^3 f(x)$ .                                                       |   |  |  |  |
| 9. F                                                                                         | 9. Find the Z transform of $\{e^{an}\}$ .                                                                          |   |  |  |  |
| 10.S                                                                                         | 10. State initial value theorem of Z transforms.                                                                   |   |  |  |  |
|                                                                                              | PART – B (50 Marks)                                                                                                |   |  |  |  |
| 11.a) Solve $x (y - z) p + y (z - x) q = z(x - y)$ .                                         |                                                                                                                    |   |  |  |  |
| b)                                                                                           | ) Solve $(p^2 + q^2) x = PZ$ by Charpit's method.                                                                  | 5 |  |  |  |
| 12.a) Find the Fourier series expansion of $f(x) = x^3$ in $(-\overline{A}, \overline{A})$ . |                                                                                                                    |   |  |  |  |
| b                                                                                            | ) Obtain the Fourier cosine series of                                                                              | 5 |  |  |  |
|                                                                                              | $f(x) = \begin{cases} -1, & 0 \le x \le 1\\ 1, & 1 < x \le 2 \end{cases}$                                          |   |  |  |  |
| 13. Find the solution of the heat equation                                                   |                                                                                                                    |   |  |  |  |
|                                                                                              | $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, \ 0 < x < \overline{A}, \ t > 0$           |   |  |  |  |

Subject to the conditions  $4(0, t) = 4(\overline{x}, t) = 0$  and  $4(x, 0) = \sin x$ ,  $0 < x < \overline{x}$ . 10

- 2 -
- 14.a) Solve the system of equations x + 2y 2z = 1, 2x 3y + z = 0, 5x + y 5z = 1and 3x + 14y - 12z = 5 by Gauss elimination methods.
  - b) Find the approximate value of y(1.2) for  $\frac{dy}{dx} = -2xy^2$ , y(1)=1 using Euler's method with step size h = 0.1.

15.a) If 
$$Z\langle f_n \rangle = \frac{3z^2 - 4z + 7}{(z-1)^3}$$
, find  $f_2$ . 5

b) If 
$$Z\langle n^3 \rangle = \frac{z^3 + 4z^2 + z}{(z-1)^4}$$
, then find  $Z\langle n^4 \rangle$ . 5

- 16.a) Solve r = t by Monge's method.
  - b) Using convolution theorem of Z transforms,

find 
$$Z^{-1}\left\langle \frac{z^2}{(z-1)(z-2)}\right\rangle$$

- 17.a) Find the smallest positive root of the equation  $x^3 5x 1 = 0$  correct to two decimal places using Newton-Raphson method. 5
  - b) Find  $f^{1}(1.0)$  from the following :

|      | r      |        | r      |
|------|--------|--------|--------|
| Х    | 1.0    | 1.2    | 1.4    |
| f(x) | 0.6931 | 0.7885 | 0.8755 |



5

5

5

5

5