MATHEMATICS

(Common for B.Sc. / BA)
Paper 3: Linear Algebra and Vector Calculus

Time: 3 hours
Max Marks: 80

SECTION - A

Answer all the FOUR questions. Each question carries 15 marks.

1. a) i) State and Prove the necessary and sufficient condition for a non-empty subset of a vector space to be a subspace.
ii) State and Prove Rank and Nullity theorem of Linear Transformation. 8M (or)
b) i) Prove that $\operatorname{dim}\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)=\operatorname{dim} \mathrm{w}_{1}+\operatorname{dim} \mathrm{w}_{2}-\operatorname{dim}\left(\mathrm{w}_{1} \cap \mathrm{w}_{2}\right)$
ii) $\mathrm{T}: R^{3} \rightarrow R^{2}$, the matrix of $\mathrm{T}=\left(\begin{array}{lll}1 & 2 & -3 \\ 4 & 2 & -1\end{array}\right]$ Determine the transformation relative to bases $\{(1,2,1),(2,0,1),(0,3,4)\}$ and $\{(2,1),(0,5)\}$
2. a) i) Prove that $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$, where W is a subspace of a vector space $\mathrm{V}(\mathrm{F})$.
ii) Show that the transformation $\mathrm{T}: R^{3} \rightarrow R^{3}$, defined by $T(x, y, z)=(x-y, 0, y+z)$ is a linear transformation.
b) i) State and Prove necessary and sufficient condition the vector space to be the direct sum of its two subspaces w_{1} and w_{2}.
ii) Prove that two finite dimensional vector spaces $\mathrm{U}(\mathrm{F})$ and $\mathrm{V}(\mathrm{F})$ are isomorphic if and only if $\operatorname{dimU}=\operatorname{dimV}$.

8M
3. a) i) State and Prove Bessel's inequality..
ii) Find the characteristic values and characteristic vectors of the matrix
$\mathrm{A}=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 4\end{array}\right)$

> (or)
b) i) State and Prove Cayley-Hamilton Theorem for matrices.
ii) Using Gram-Schmidt Orhogonalisation Process to find and orthonormal 7 M basis of the vector space $\mathrm{R}^{3}(\mathrm{R})$ from the basis

$$
\mathrm{B}=\{(1,-1,2),(0,2,1),(1,2,0)\} .
$$

4. a) i) State and Prove Green's theorem in a plane
ii) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9, z=x^{2}+y^{2}-3$ at $(2,-1,2)$
