B. Tech Degree VI Semester Examination, April 2010

EE 604 ELECTRICAL DRAWING (2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

(Answer <u>ALL</u> questions) (Each question carries <u>TWENTY</u> <u>FIVE</u> marks) (Assume any additional data needed)

I. Design and draw a developed winding diagram for a 16 slot double layer, 4 pole dc lap winding. Make provisions for equalizer rings.

OR

II. Draw to quarter scale a half sectional longitudinal view of a 75kw DC generator with main dimensions as given below :

Number of poles	=	4
External diameter of armature stamping	=	41.5 cm
Internal diameter of armature stamping	=	21.5 cm
Length of armature core		24cm
Number of slots	=	39
Size of slot		3.5 cm x 1.2 cm
Number of coil sides/slot	=	6
Armature winding overhang on each side	=	16cm
Diameter of commutator	=	26.6cm
Length of commutator	=	23.5 cm
Number of commutator segments	=	117
Air gap		0.5 cm
Total height of main poles	=	16 cm
Depth of pole winding		2.8 cm
Pole arc/pole pitch	2 5	62%
Interpole section	=	4.4 cm x 16 cm
Thickness of yoke	=	6 cm
Shaft diameter at coupling end	=	8 cm
Total length of shaft	==	144 cm

The machine has end shield bearings and is of protected type with a fan mounted at the back end. The armature stampings are mounted on a cast iron spider keyed to the shaft and clamped between end plates. Other missing data may be assumed.

III. Draw the full sectional plan of a 500KVA, 6600/400V single phase power transformer. Detailed dimensions of parts:

<u>Core</u>

Laminated steel plates of 0.3	35mm thickness,	core	construct	cruciform
matar	_	33 cr	n	

Diameter	=	33 cm
Width of largest stamping	=	28 cm
Width of smallest stamping	=	17.5 cm
Centre to centre distance between cores		49 cm

(Turn Over)

Winding		
LV winding		
Inside diameter		33.75 cm
Outside diameter	=	38.35 cm
HT winding (In two layers) concentric ty	pe	
Inside diameter of HT first layer	=	41.5 cm
Outside diameter of HT first layer	=	43.3 cm
Inside diameter of HT second layer	-	45 cm
Outside diameter of HT second layer		46.8 cm
OR	2	

IV. Draw the quarter sectional and view of a 3ϕ slip ring induction motor with following dimensions.

Inside diameter of stator	=	55 cm
Stator length	35	20 cm
Rotor diameter	=	54.6 cm
Height of base upto eye bolt	=	93.04 cm
Width of foot step	· <u></u>	92.76 cm
Foot thickness	=	5cm
Length	=	14 cm

V. Draw the winding diagram of a 4 pole 36 slot 3ϕ mesh connected armature.

OR

- VI. Draw a single layer concentric winding unbifurcated diagram with two plane overhang for a 3ϕ , 48 slots, 8 poles ac armature.
- VII. Draw the single line layout of a 220/11KV substation.

OR

VIII. Draw the structural details of a double circuit transmission line tower.

2