

Code No.: 6005

FACULTY OF ENGINEERING AND INFORMATICS B.E. I Year (Common to all Branches) (Supplementary) Examination, Dec. 2009/Jan. 2010 ENGINEERING CHEMISTRY

Time: 3 Hours] [Max. Marks: 75

Note: Answer all questions of Part A.

Answer five questions of Part B.

PART – A (25 Marks) 1. What happens to the internal energy of a system, if work is done i) by the system, ii) on the system? 2 2. Calculate the change in entropy accompanying the isothermal expansion of 5 moles of an ideal gas to 6 times to its initial volume at 330 K. 3 3. Why does the equivalent conductance increases with dilution? 2 4. Describe the construction of standard hydrogen electrode. 3 5. Why does corrosion of water filled steel tanks occur below the waterline? 3 6. What are the salts responsible for the temporary and permanent hardness of water? 2 7. Differentiate between homopolymer and copolymer. 2 8. Why does raw rubber need vulcanization? 3 9. What is octane number? What is its significance? 2 10. Calculate the minimum weight of air required for comple combustion of 1 kg of fuel containing : C = 90%, H = 3.5%; O = 3% and rest is ash. 3

Code No.: 6005

		PART - B (50 Mark	S)
11.	a)	Derive a Clausius-Clapeyron, equation. What are its applications?	7
	b)	An ideal gas expands reversibly and isothermally from a volume of 10 lit. to 20 lit. at 27°C. Calculate the ΔE , q and w.	3
12.	a)	Describe the construction of calomel electrode.	4
	b)	What is the effect of dilution on specific conductance and equivalent conductance?	2
	c)	A zinc rod is placed in 0.01 m ZnSO ₄ solution at 298 K. Write the electrode	
		reaction and calculate the potential of the electrode $E_{zn^{2+}/zn}^{0} = -0.76V$.	4
13.	a)	What is corrosion? Describe the mechanism of electrochemical corrosion.	6
	b)	Describe the softening of water by ion-exchange method.	4
14.	a)	Write preparation, properties and uses of (a) PVC (b) Buna-N.	6
	b)	Differentiate between thermoplastics and thermosetting resins.	4
15.	a)	Describe the analysis of coal by proximate analysis.	6
	b)	Describe the determination of calorific value by Bomb colorimeter.	4
16.	a)	Differentiate between isothermal process and adiabatic process.	2
	b)	Discuss the entropy change in reversible and irreversible processes.	4
	c)	Write a note on break point chlorination.	4
17.	a)	Describe the construction of lead-acid battery with the reactions occurring during charging and discharging.	6
	b)	Describe the principle of strong acid-strong base conductometric titration.	4