Name :	
Roll No. :	Conformation and Excellent

Invigilator's Signature :

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013 2013

NUMERICAL METHODS

Time Allotted : 3 Hours

Full Marks: 70

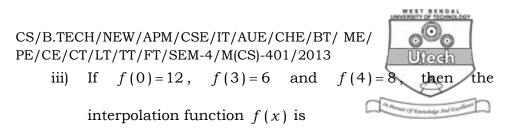
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

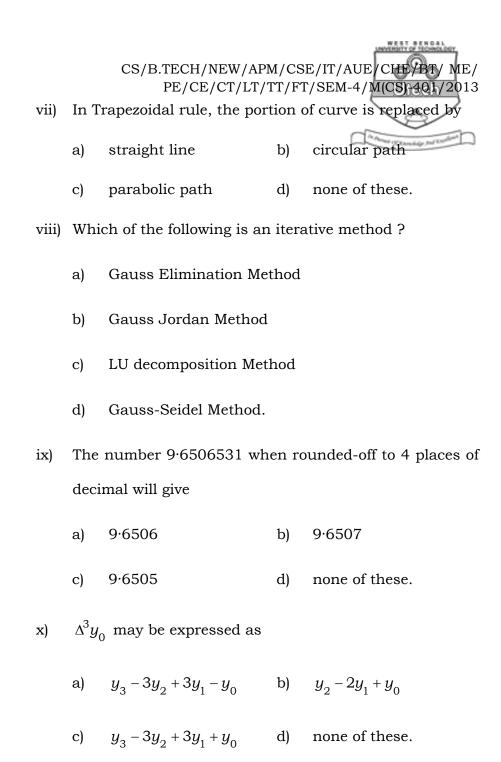

 $10 \times 1 = 10$

i) The number of significant figures in 0.03409 is

- a) five b) six
- c) seven d) four.
- ii) The kind of error occurs when π approximated by 3.14 is
 - a) truncation error b) round-off error
 - c) inherent error d) relative error.

4002

[Turn over


- a) $x^2 3x + 12$ b) $x^2 5x$
- c) $x^3 x^2 5x$ d) $x^2 5x + 12$.
- iv) Newton-Raphson method for solution of the equation f(x) = 0 fails when

a)
$$f'(x) = 1$$
 b) $f'(x) = 0$

- c) f'(x) = -1 d) none of these.
- v) In Gaussian elimination method, the given system of equation represented by Ax = B is converted to another system Ux = Y where U is
 - a) diagonal matrix
 - b) null matrix
 - c) identity matrix
 - d) upper triangular matrix.
- vi) Error in Weddle method of integration is

a) 0 b)
$$-\frac{h^4}{180}(b-a)M_4$$

c)
$$-\frac{h^2}{12}(b-a)M_2$$
 d) $-\frac{h^6}{840}(b-a)M_6$.

[Turn over

- xi) Which of the following statements applies to the bisection method used for finding roots of functions ?
 - a) Convergence within a few iteration
 - b) Guaranteed to work for all continuous functions
 - c) Is faster than the Newton-Raphson method
 - d) Requires that there be no error in determining the sign of the function.
- xii) Runge-Kutta formula has a truncation error, which is of the order
 - a) h^2 b) h^4
 - c) h^5 d) none of these.

xiii) In finite difference method, $\frac{d^2y}{dx^2}$ is replaced by

a) $\frac{y_{n+1} - 2y_{n-1} + y_n}{2h^2}$ b) $\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2}$

c)
$$\frac{y_{n+1} - 2y_{n-1} + y_n}{2h}$$
 d) $\frac{y_{n+1} - 2y_{n-1} + y_n}{4h^2}$

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

3 × 5 = 15

- 2. a) Show that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$.
 - b) Define forward difference operator Δ and shift operator *E*. Prove that $E \cdot \Delta = \Delta \cdot E$.

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS) 401/2013

3. Find the missing terms in the following table :

x	0	5	10	15	20	25
y	6	10	?	17	?	31

- 4. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rd rule taking n = 6. Hence find the value of π .
- 5. Using Runge-Kutta method of 4th order solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2.
- 6. Solve the following system of linear equations by Gaussian Elimination method :

3x + 4y + 5z = 18, 2x - y + 8z = 13, 5x - 2y + 7z = 20.

GROUP - C

(Long Answer Type Questions)

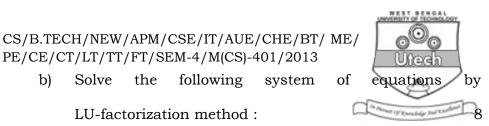
Answer any *three* of the following. 3 × 15 = 45
7. a) What do you mean by interpolation ? Derive Newton's backward interpolation formula. Can you apply this formula for unequispaced interpolating points ? 7

b) Using Trapezoidal and Simpson's $\frac{1}{3}$ rd rule compute 5.2 $\int \log x \, dx$ by taking seven ordinates correct up to four

 $\int_{4}^{3/2} \log_e x \, dx$ by taking seven ordinates correct up to four

decimal places.

8


7

8. a) Find the value of $\sqrt{2}$ from the following table :

ſ	X	1.9	2.1	2.3	2.5	2.7
	$f(x) = \sqrt{x}$	1.3784	1.4491	1.5166	1.5811	1.6432

4002

[Turn over

LU-factorization method :

PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013

the

b)

Solve

$$3x + 4y + 2z = 15$$
$$5x + 2y + z = 18$$
$$2x + 3y + 2z = 10$$

system

following

Find a root of the equation $x \log_{10} x = 1 \cdot 2$ by the 9. a) method of false position correct to three decimal places.

7

8

b) Find the inverse of the matrix
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$
 by using

Gaussian elimination method.

10. a) Apply Milne's method to find
$$y(0.8)$$
 for the equation
 $\frac{dy}{dx} = x + y^2$, given that $y(0) = 0$, $y(0.2) = 0.02$,
 $y(0.4) = 0.0805$, $y(0.6) = 0.1839$.

b) Evaluate
$$\int_{0}^{0.6} \frac{dx}{\sqrt{1-x^2}}$$
, using Weddle's rule taking

12 equal subintervals. 7

CS/B.TECH/NEW/APM/CSE/IT/AUE/CHE/BT/ ME/ PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2013 11. a) Using Gauss-Seidel method find the solution of the following system of linear equations correct up to two decimal places :

$$3x + y + 5z = 13$$

 $5x - 2y + z = 4$
 $x + 6y - 2z = -1$
7

b) Using finite difference method solve the boundary value problem :

==============

$$\frac{d^2y}{dx^2} + y + 1 = 0 \text{ with } y(0) = 0 , y(1) = 0.$$
 8