
CS 2255 – DATABASE MANAGEMENT SYSTEMS

1

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

CS 2255– DATABASE MANAGEMENT SYSTEMS

(Common to CSE and IT)
 L T P C

 3 0 0 3

UNIT I FUNDAMENTALS 9

Purpose of database system – Views of data – Data models – Database languages–

Database system architecture – Database users and administrator – Entity Relationship

model (E-R Model) – E-R diagrams – Introduction to relational databases.

UNIT II RELATIONAL MODEL 9

The relational model – The catalog – Types – Keys – Relational algebra – Domain

relational calculus – Tuple relational calculus – Fundamental operations – Additional

operations – SQL fundamentals – Integrity – Triggers – Security – Advanced SQL

features – Embedded SQL – Dynamic SQL – Missing information – Views –

Introduction to distributed databases and client/server databases.

UNIT III DATABASE DESIGN 9

Functional dependencies – Non-loss decomposition – Functional dependencies – First –

Second – Third normal forms – Dependency preservation – Boyce/codd normal form –

Multi-valued dependencies and fourth normal form – Join dependencies and fifth normal

form.

UNIT IV TRANSACTIONS 9

Transaction concepts – Transaction recovery – ACID properties – System recovery –

Media recovery – Two phase commit – Save points – SQL facilities for recovery –

Concurrency – Need for concurrency – Locking protocols – Two phase locking – Intent

locking – Deadlock – Serializability – Recovery Isolation Levels – SQL Facilities for

Concurrency.

UNIT V IMPLEMENTATION TECHNIQUES 9

Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary Storage – File

Organization – Organization of Records in Files – Indexing and Hashing – Ordered

Indices – B+ Tree Index Files – B Tree index files – Static hashing – Dynamic hashing –

Query processing overview – Catalog information for cost estimation – Selection

operation – Sorting – Join operation – Database Tuning.

Total: 45

TEXT BOOKS

1. Silberschatz, A., Korth, H.F. and Sudharshan, S., “Database System Concepts”, 5th

Edition, Tata Mc-Graw Hill, 2006

2. Date, C. J., Kannan, A. and Swamynathan, S., “An Introduction to Database Systems”,

8th Edition, Pearson Education, 2006.

REFERENCES

1. Elmasri, R. and Navathe, S.B., “Fundamentals of Database Systems”, 4
th

 Edition,

Pearson / Addison Wesley, 2007.

2. Ramakrishnan, R., “Database Management Systems”, 3rd Edition, Mc-Graw Hill,

2003.

3. Singh, S. K., “Database Systems Concepts, Design and Applications”, 1
st
 Edition,

Pearson Education, 2006.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

2

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

UNIT I - INTRODUCTION

Data

 Data are raw facts. (E.g.: Name, Telephone no etc.)

Information

 Processed raw data.

 Three key attributes of information

i) Accuracy

ii) Timeliness

iii) Relevancy

Information processing

It is i) Acquisition

 ii) Storage

 iii) Organization

iv) Retrieval

v) Display and

vi) Dissemination

Data Base

 Database is a collection of interrelated data.

Database Management Systems

DBMS is a collection of interrelated data and a set of programs to access those

data. Applications: banking, airlines, universities, finance etc.

Why study Data Base?

i) Shift from computation to information.

ii) Data sets increasing in diversity and volume.

iii) DBMS encompasses most of computer science

Why Use a Data Base?

 A data base system provides the organization with centralized control of its data.

 Data base involves,

i) Definition of structures for information storage [Data Modeling]

ii) Providing of mechanism for the manipulation of information.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

3

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

iii) Concurrency control if the system is shared by users.

iv) Security and crash recovery.

Features of a database:

i) It is a persistent (Stored) collection of related data.

ii) The data is input (Stored) only once.

iii) The data is organized (In some fashion).

iv) The data is accessible and can be queried (Effectively and Efficiently)

Database Applications:

1. Banking: all transactions

2. Airlines: reservations, schedules

3. Universities: registration, grades

4. Sales: customers, products, purchases

5. Online retailers: order tracking, customized recommendations

6. Manufacturing: production, inventory, orders, supply chain

7. Human resources: employee records, salaries, tax deductions

Databases touch all aspects of our lives.

Data base technology is CORE TECHNOLOGY with links to:

 Information management / Processing

 Data analysis / Statistics

 Multimedia and hypermedia

 Office and document systems

 Business processes ,Work flow , CSCW

(Computer Support Cooperative work)

But modern DB System depends on an infrastructure of:

 Networks (Both LAN and WAN)

 Client – Server computing architecture

DATA BASE MANAGEMENT SYSTEM

History of Database Systems 1950s and early 1960s:

 Data processing using magnetic tapes for storage

 Tapes provide only sequential access

 Punched cards for input

CS 2255 – DATABASE MANAGEMENT SYSTEMS

4

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Late 1960s and 1970s:

 Hard disks allow direct access to data

 Network and hierarchical data models in widespread use

 High - performance (for the era) transaction processing

 Ted Codd defines the relational data model

 Would win the ACM Turing Award for this work

 IBM Research begins System R prototype

 UC Berkeley begins Ingres prototype

1980s:

 Research relational prototypes evolve into commercial systems

 SQL becomes industry standard

 Parallel and distributed database systems

 Object -oriented database systems

1990s:

 Large decision support and data-mining applications

 Large multi-terabyte data warehouses

 Emergence of web commerce

2000s:

 XML and XQuery standards

 Automated database administration

 Increasing use of highly parallel database systems

 Web-scale distributed data storage systems

Purpose of Database systems

 Before dbms, data were stored in OS files. Permanent records are stored in

various files and some application programs to extract and add records to those files.

The following are the disadvantages of file processing system.

Disadvantages of file processing systems

 Data redundancy and inconsistency

 Difficulty in accessing data

 Data isolation

 Integrity problems

CS 2255 – DATABASE MANAGEMENT SYSTEMS

5

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Atomicity problems

 Security problems

(*) Data redundancy and inconsistency:

 Redundancy the same information may be duplicated in several files.

 Inconsistency data are modified in one file and not in another file.

(*) Difficulty in accessing data:

 If there is no application program for specific task, accessing data is not possible.

(*)Data isolation:

 Data are scattered in various files and each file may be in different format. Hence

different application programs are needed.

(*)Integrity problems:

 The data values stored in database must satisfy some constraints (ie) in a bank

account the amount should not be less than 1000. According to this condition the

application program should be developed.

(*) Atomicity problems:

 If in case of system failure the system cannot restore to the consistent state that

was before failure. This problem is known as atomicity problem.

Ex: $1000

 A----------------/----B

 Failure

(*)Security problems:

 Prevention of data access by unauthorized users.

Comparison of File Processing system and DBMS

DBMS File Processing System

1. It allows access to tables at a time It allows access to single file at a time

2. It co-ordinates the physical and logical It co-ordinates only the physical access

access to the data to the data.

3. It reduces the amount of data duplication It often have redundant or duplicate data

 items

4. It is designed to allow flexibility in It allows only pre-determined access to

What queries give access to the data data(By specific compiled programs)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

6

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

5. It is designed to co-ordinate and permit It is much more restrictive in simultaneous

multiple users to access data at the data access

same time

6. It has a unique key or index in order It do not have keys or indices in order to

to access data directly or randomly. find data rapidly

7. It is collection of related tables It is a collection of related records

Views of Data

A major purpose of a database system is to provide users with an abstract view of

data. That is the system provides certain details of how the data are stored and

maintained.

Benefits of views

i) Views provide a level of security

ii) Views provides a mechanism to customize the appearance of the database.

iii) A view can present a consistent, unchanging picture of the structure of the

database, even if the underlying database is changed.

Data Abstraction

 System hides certain details of the data like “how the data are stored and

maintained “. Since many database system users are not computer trained, developers

hide the complexity from users through several levels of abstraction, to simplify user’s

interaction with the system. There are 3 levels of data abstraction.

(i) physical level

(ii) logical level

(iii) view level

View level describe only the part of db

Logical level what data are stored in db and what is the relationship between them

Physical level how data structures are defined in the database and the way of storing

data in db.

Objective of the three level Architecture:

To separate each user’s view of the database from the way the database is physically

represented.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

7

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Fig : Architecture for a database system or Three levels of data abstraction

Instance and schema

 The collection of information stored in a db at a particular moment is known as

instance. An instance changes frequently. The overall design of db is known as schema.

Schema changes occasionally. Database systems have several schemas partitioned

according to the levels of abstraction.

 The Physical schema describes the database design at the physical level, while

the logical schema describes the database at the logical level. A database may also have

several schemas at the view level, sometimes called sub schemas that describe different

views of the database.

Physical level / Internal level : describes how a record (e.g., customer) is stored.

Logical level / External level : describes data stored in database, and the

relationships among the data.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

8

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

type customer = record

 customer_id : string;

 customer_name : string;

 customer_street : string;

 customer_city : string;

end;

View level / Conceptual level : application programs hide details of data types.

Views can also hide information (such as an employee’s salary) for security

purposes.

Instance and schema

Instance:

 The collection of information/data stored in a dB at a particular moment is known

as instance. An instance changes frequently.

Schema / Data base Schema:

 The overall design of dB is known as schema.

Types of Schema:

Schema changes occasionally. Database systems have several schemas partitioned

according to the levels of abstraction.

o External Schemas / logical Schema

o Conceptual Schema

o Internal / Physical Schema

CS 2255 – DATABASE MANAGEMENT SYSTEMS

9

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Fig : Three – Schema Architecture

Internal / Physical Schema:

 It describes the database design at the physical level , which is the lowest level of

abstraction describing how the data are actually stored.

External Schemas / logical Schema:

 It describes the database design at the logical level, which describes what data are

stored in the database and what relationship exits among the data.

Conceptual Schema:

 The schemas at the view level are called sub schemas that describes different

views of the database.

Data Models

 Data model is a collection of conceptual tools for describing data, data

relationships, data semantics and consistency constraints. A data model provides a way

to describe the design of a database at the physical, logical and view level.

 Data models can be classified into 4 categories:

 Relational model

 The entity relationship model

CS 2255 – DATABASE MANAGEMENT SYSTEMS

10

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Object based data model

 Semi structured data model

DATA MODEL

 Object based data model Record based data model Physical model

- E-R model - Relational model

- Semantic model - Network model

- Object oriented model - Hierarchical model

- Functional model

Relational Model

 The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns otherwise known as

attributes and each column has unique name. Since the database is structures in fixed

format records of several types it is also known as record based model. Each record type

defines a fixed number of fields or attributes. Each row in the table is called “tuple”.

The Entity Relationship Model

 The E-R is based on a perception of a real world that consists of a collection of

basic objects called entities and of relationships among these objects. An “entity” is a

thing or object in the real world that is distinguishable from other objects.

The entity relationship (E-R) model consists of a collection of basic objects,

called entities and of relationships among these entities.

Entity

An “entity” is a thing or object in the real world that is distinguishable from other

objects.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

11

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Example:

 Each person is an entity , and bank accounts is an entity.

Attributes

 Entities are described in a database by a set of attributes.

Example :

 The attributes of account entity are account – no, balance, etc.

Types of Attributes

i) Composite and simple (Atomic) attributes

ii) Single valued and multi valued attributes

iii) Stored and derived

iv) Null values

v) Complex attributes

Composite and simple (Atomic) attributes

 Composite attribute,

 Can be divided into smaller subparts

 Can from hierarchy

 Address

Street address City State Pin code

Door No Cross no Street name

State Simple attribute Street Address Composite attribute

Single valued and multi valued attributes

Single valued attributes have a single value for a particular entity.

 (E.g. Age attributes of a person)

Multi valued attributes has multiple values for a particular entity.

(E.g. Color attributes of a car)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

12

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Stored and derived attributes

In some cases two or more attribute values are related. (E.g. Age and birth date attributes

of a person)

 For a particular person entity, the value of age can be determined from the current

date and the value of that person’s birth date.

 Age attribute is called as derived attribute.

 Birth attribute is called as stored attribute (or) Base attribute.

Null Values

 An attribute takes a null value when an entity does not have a value for it

 Null can also be designated that an attribute value in unknown. An unknown

value may be either missing or not known.

Object Based Data Model

 The object oriented data model can be seen as extending the E-R model with

other notions of encapsulation, methods (functions), and object identity. The object

relational data model combines features of the object –oriented data model and relational

data model.

Semistructured Data Model

 The Semistructured data model permits the specification of data where individual

data items of the same type may have different sets of attributes. This is in contrast to the

data models mentioned earlier, where every data item of a particular type must have the

same set of attributes. The Extendible Markup Language (XML) is widely used to

represent semi structured data.

Hierarchical model

 There are two types of data structure exits in this model. They are

 (i) Records

(ii) PCR - Parent Child Relationship.

Record it is nothing but collection of fields. Each field has data type

 Records of same type are grouped into record types.

PCR type one to many relationships between two record types.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

13

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 --------root edge

 Nodes

 Level

1

 Level

2

 Level 3

Advantage: Disadvantage:

(i) High speed complex to implement

(ii) Ease of updates management problem

(iii) Simplicity programming complexity

(iv) Data security Implementation limit

(v) Data integrity Redundancy of data.

(vi) Efficiency

Network Model

 In this model the data is represented as collection of records and relationships

among data is represented by “links” (pointers).

To locate particular record it uses pointers.

 DBMS

Dept 2 Dept3 Dept1

1

Id1 id1.1 id2 id2.

1

id3 Id3.1

jim clerk 3000 jack manager 6000

V1 V2 V3

I1 I2 I3 I4

CS 2255 – DATABASE MANAGEMENT SYSTEMS

14

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Advantages:

 Simplicity

 Can handle 1: n and n: n

 Ease data access

 Data integrity and data dependency

Disadvantages:

 Detailed structure knowledge is required

 Lack of structural independency

Database Languages:

 A database system provides a data definition language to specify the database

schema and a data manipulation language to express database queries and updates. The

DDL and DML are not two separate languages. Instead they simply form parts of a single

database languages, such as SQL language.

Data Manipulation Language:

 DML is a language that enables users to access or manipulate data as organized

by the appropriate data model. The types of access are

1. Retrieval of information stored in database

2. Insertion of new information into the database

3. Deletion of information from the database

4. Modification of information stored in the database,

These are basically two types:

 Procedural DMLs: requires a user to specify what data are needed and

how to get those data.

 Declarative DMLs / non-procedural DMLs : requires a user to specify

what data are needed without specifying how to get those data.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called a query language.

Data Definition Language:

 DDL is used to specify additional properties of the data. The storage structure and

access methods used by the database systems are specified by a set of statements in a

special type of DDL called data storage and definition language. The data values stored

CS 2255 – DATABASE MANAGEMENT SYSTEMS

15

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

in the database must satisfy certain consistency constraints. Some of the integrity

constraints that the databases concentrate on are

1. Domain constraints

2. Referential integrity

3. Assertions

4. Authorization

Domain Constraints:

 A domain of possible values must be associated with every attribute. Declaring an

attribute to be a part of a particular domain acts as a constraint on the values that it can

take. It is the most elementary part of integrity constraints that can be easily tested by the

system whenever a new data item is entered into the database.

Referential integrity:

 There are cases where we wish to ensure that a value that appears in one relation

for a given set of attributes also appears for a set of attributes in another relation.

Database modifications can cause violations of referential integrity. When referential

integrity constraint is violated the normal procedure is to reject the action that caused the

violation.

Assertions:

 An assertion is any condition that the database must always satisfy. Domain

constraints and referential integrity are special forms of assertions. When an assertion is

created, the system tests it for validity. If the assertion is valid then any future

modifications to the database is allowed only if it does not cause the assertion to be

violated.

 Database System Architecture:

 Architecture

 Storage manager Query processor Users & administrators

1. Authorization and 1. DDL interpreter 1.Naive users

Integrity manager

2. Transaction manager 2.DML compiler 2.Appln programmer

CS 2255 – DATABASE MANAGEMENT SYSTEMS

16

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

3. File manager 3.Query evaluation 3.Sophisticated users

4. Buffer manager Engine 4.Specialized users

Storage manager:

(i) Authorization and integrity manger:

 Checks for integrity constraints and for authorized users.

(ii) Transaction manager:

 Ensures that database remains in a consistent state when system fails and

proceeds without conflicting.

(iii) File manager:

 Manages the allocation of storage space on disk and data structures used to store

that information.

(iv) Buffer manager:

 It is responsible for fetching data from disk into main memory.

Data structure used by storage manager

 Data files where database is stored

 Data dictionary contains all files in db and the no of records

 Indices like index it provides fast access to data items

Query processor

 DDL Interpreter the low level language DDL (stmts)is interpreted

 DML compiler the low level language DML(stmts) are compiled

 Query evaluation executes the low level instructions generated by DML

engine compiler

CS 2255 – DATABASE MANAGEMENT SYSTEMS

17

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Database users and administrators:

 Naïve users: Naïve users are unsophisticated users who interact with the

system by invoking one of the application programs that have been written previously.

 Eg: click the transfer button

 Application programmers:

 Application programmers are computer professional who write application

programs. They can choose from many tools to develop user interfaces.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

18

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Rapid Application Development Tools (RAD tools) are a tool that enables the

application programmer to construct forms and reports with minimal programming

effort.

 Sophisticated users these users interact with the system without writing programs.

They form their request in a database query language. They submit the query to the query

processor, whose function is to break down DML statements into instructions that the

storage manager understands.

 Specialized users: are sophisticated users who write specialized database

applications that do not fit into the traditional data processing framework. Among these

applications are computer aided design systems, knowledge based and expert systems,

systems that store data with complex data types and environmental modeling systems.

Data Administrator:

 One of the main reasons for using DBMS is to have central control of both the

data and the programs that access those data. A person who has the central control over

the system is called a Database Administrator (DBA). The functions of DBA include:

1. Schema Definition:

 The DBA creates the original database schema by executing a set of data

definition in the DDL.

2. Storage structure and access method definition

3. Schema and physical organization modification:

The DBA carries out changes to schema and physical organization to reflect the changing

needs of the organization or to alter the physical organization to improve performance.

4. Granting of authorization for data access:

 By granting different types of authorization, the DBA can regulate which parts of

the database various users can access. The authorization information is kept in a special

system structure that the database system consults whenever someone attempts to access

the data in the system.

5. Routine Maintenance:

 Periodically backing up the database, either onto tapes or on to remote servers to

prevent loss of data.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

19

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Ensuring that enough free disk space is available of normal operations and

upgrading disk space is required.

 Monitoring the jobs running on the database and ensuring that performance is not

degraded by very expensive tasks submitted by different users.

E-R MODEL:

 Entity relationship model:

 Entity is nothing but set of objects in the real world. There are 3 components in the

E-R model.

They are (i) entity (ii) attributes (iii) relationship set.

(a) Entity set:

 An entity is a “thing” or “object” in the real world that is distinguishable from

other objects. Eg. Person, car, house etc. Each entity has its own properties. An entity set

is a collection of entities having same properties.

(b) Attributes:

 The properties that describe an entity is called an attribute. There are different

types of attributes.

(i) Simple attributes an attribute that cannot be divided into further

 Subparts. Eg. Cust_id of customer entity.

(ii) Composite attribute an attribute that can be divided into set of subparts.

 Eg. Cust_namefirst name, last name, middle name

(iii) Single value attribute an attribute having only one value in a particular

 Entity. Eg. In a customer entity, name, id, st are

 Single value attribute

(iv) Multi-valued attribute an attribute having more than one value for a

 particular entity. Eg. Phone number.

(v) Derived attribute an attribute which is derived from other related

 attributes (or) entities. Eg. Age attribute is derived

 from D.O.B attribute.

(c) Relationship set:

 A relationship is an association among several entities. A relationship set is a

set of relationships of same type.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

20

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Relationship set

Recursive relationship set an entity that participates more than once in different roles

is known as recursive relationship set.

Degree of relationship set the no of entity set participate in the entity set is the degree

of the relationship set.

The following are the types of relationship sets:

(i) Unary relationship set:

(ii)Binary relationship sets:

(iii)Ternary relationship sets:

(iv) Quaternary relationship set:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

21

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Mapping cardinalities:

 The no of entities to which another entity can be associated via a

relationship set is referred to as mapping cardinalities.

(i) one- to –one: (1 : 1)

 one entity in A is associated with atmost one entity in B and vice versa.

(ii) one - to – many: (1 : M)

 one entity in A is associated with more than one entity in B .

CS 2255 – DATABASE MANAGEMENT SYSTEMS

22

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

(iii) Many - to – many: (M:N)

 Any no of attributes in A can be associated with any no of attributes in B.

(iv) Many - to –one: (M:1)

 Any no of attributes in A can be associated with only one attribute in B.

E-R Diagram:

 The logical representation of the overall logical structure of the database is

called E-R diagram.

 Rectangle represents entity sets.

 Ellipse represents attributes.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

23

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Diamond represents relationship sets.

 Lines links attributes to relationship sets and vice versa.

 Double ellipse represents multivalued attributes.

 Dashed ellipse which denote derived attribute.

 Double lines indicate total participation of an entity in a relationship set.

 Double rectangles represent weak entity sets.

(*) A weak entity set is an entity set that may not have sufficient attributes to form a

primary key

(*) A strong entity set is an entity set that has a primary key.

Extended E-R model:

 The E-R model that is supported with the additional semantic concept is

called the extended Entity Relationship model (EER model).

 Specialization

 Generalization

 Aggregation

CS 2255 – DATABASE MANAGEMENT SYSTEMS

24

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Specialization:

 The process of designating sub groupings within an entity set is called

specialization. The specialization of person allows distinguishing among persons

according to whether they are employees or customers. It is depicted by a triangle

component labeled “ISA”

Generalization:

 It is a process of defining a more general entity type from a set of more

specialized entity types. For eg in the above diagram there are similarities between the

customer entity set and employee entity set (i.e) they have more attributes in common.

This commonality can be expressed by generalization. Here person is a higher entity set

and customer and employee are lower entity sets, also called as super class and subclass.

Aggregation:

 Aggregation is an abstraction thro’ which relationships are treated as higher level

entities. It avoids redundancy and redundant relationships

E-R diagram with redundant relationships:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

25

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

E-R diagram with aggregation:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

26

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Other symbols used in E-R model are:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

27

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Introduction to Relational Database

A database can be understood as a collection of related files. How those files are related

depends on the model used. Early models included the hierarchical model (where files

are related in a parent/child manner, with each child file having at most one parent file),

and the network model (where files are related as owners and members, similar to the

network model except that each member file can have more than one owner).

The relational database model was a huge step forward, as it allowed files to be related

by means of a common field. In order to relate any two files, they simply need to have a

common field, which makes the model extremely flexible.

Poet

Code First Name Surname Age

1 Mongane Afrika 62

2 Stephen Serote 58

3 Tatumkhulu Watson 29

Poem

Title Poet

Wakening Night 1

Thrones of Darkness 2

Once 3

These two tables relate through the code field in the poet table, and the poet field in the

poem table. We can see who wrote the poem 'Once' by following the relationship, and

see that it was poet 3, or Tatumkhulu Watson.

In 1970, when E.F. Codd developed the model, it was thought to be hopelessly

impractical, as the machines of the time could not cope with the overhead necessary to

maintain the model. Of course, hardware since then has come on in huge strides, so that

CS 2255 – DATABASE MANAGEMENT SYSTEMS

28

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

today even the most basic of PC's can run sophisticated relational database management

systems.

Together with this went the development of SQL. SQL is relatively easy to learn and

allows people to quickly learn how to perform queries on a relational database. This

simplicity is part of the reason that relational databases now form the majority of

databases to be found.

Basic Terms

An understanding of relational databases requires an understanding of some of the basic

terms.

 Data are the values stored in the database. On its own, data means very little.

"43156" is an example.

 Information is data that is processed to have a meaning. For example, "43156" is

the population of the town of Littlewood.

 A database is a collection of tables.

 Each table contains records, which are the horizontal rows in the table. These are

also called tuples.

 Each record contains fields, which are the vertical columns of the table. These are

also called attributes. An example would be a product record.

 Fields can be of many different types. There are many standard types, and each

DBMS (database management system, such as Oracle or MySQL) can also have their

own specific types, but generally they fall into at least three kinds - character, numeric

and date. For example, a product description would be a character field, a product release

date would be a date field, and a product quantity in stock would be a numeric field.

 The domain refers to the possible values each field can contain (it's sometimes

called a field specification). For example, a field entitled "marital status" may be limited

to the values "Married" and "Unmarried".

 A field is said to contain a null value when it contains nothing at all. Fields can

create complexities in calculations and have consequences for data accuracy. For this

reason, many fields are specifically set not to contain NULL values.

http://www.wdvl.com/Authoring/DB/
http://www.wdvl.com/Authoring/DB/SQL/Start/
http://www.oracle.com/
http://mysql.com/

CS 2255 – DATABASE MANAGEMENT SYSTEMS

29

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 A key is a logical way to access a record in a table. For example, in the product

table, the product_id field could allow us to uniquely identify a record. A key that

uniquely identifies a record is called a primary key.

 An index is a physical mechanism that improves the performance of a database.

Indexes are often confused with keys. However, strictly speaking they are part of the

physical structure, while keys are part of the logical structure.

 A view is a virtual table made up of a subset of the actual tables.

 A one-to-one (1:1) relationship occurs where, for each instance of table A, only

one instance of table B exists, and vice-versa. For example, each vehicle registration is

associated with only one engine number, and vice-versa

 A one-to-many (1:m) relationship is where, for each instance of table A, many

instances of the table B exist, but for each instance of table B, only once instance of table

A exists. For example, for each artist, there are many paintings. Since it is a one-to-many

relationship, and not many-to-many, in this case each painting can only have been

painted by one artist.

 A many to many (m:n) relationship occurs where, for each instance of table A,

there are many instances of table B, and for each instance of table B, there are many

instances of the table A. For example, a poetry anthology can have many authors, and

each author can appear in many poetry anthologies.

 A mandatory relationship exists where, for each instance of table A, one or more

instances of table B must exist. For example, for a poetry anthology to exist, there must

exist at least one poem in the anthology. The reverse is not necessarily true though, as for

a poem to exist, there is no need for it to appear in a poetry anthology.

 An optional relationship is where, for each instance of table A, there may exist

instances of table B. For example, a poet does not necessarily have to appear in a poetry

anthology. The reverse isn't necessarily true though, for example for the anthology to be

listed, it must have some poets.

 Data integrity describes the accuracy, validity and consistency of data.

 Database normalization is a technique that helps us to reduce the occurrence of

data anomalies and poor data integrity.

http://www.databasejournal.com/sqletc/article.php/26861_1474411_1

CS 2255 – DATABASE MANAGEMENT SYSTEMS

30

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

UNIT II – RELATIONAL MODEL

Relational Model:

 In this model data and their relationship are represented using a “table”. A

relation is used to represent a table.

Tuple Each row in a table is called a tuple

Attribute each column in a table is known as a attribute.

Domain The set of all possible value of an attribute is called a domain.

Degree The number of attributes in a table is referred to as degree.

Key the minimal set of attributes used to uniquely define any row in a

 Table is called a key.

Catalogs for Relational DBMS

 The information stored in a catalog of an RDBMS includes th relation names,

attribute names, and attribute domains(data types) as well as descriptions of

constraints(primary keys, foreign keys, NULL, NOT NULL, and other types of

constraints), views and storage structures and indexes.

 Security an authorization information is also kept in the catalog; this describes

each user’s privileges to access specific database relations and views, and the

creator or owner of each relation.

 In relational DBMS it is common practice to store the catalog itself as relations

and to use the DBMS software for querying, updating, and maintaining the

catalog.

 A possible catalog structure for base relation information which stores relation

names, attributes names,attribute type, and primary key information.

 The primary key of REL_AND_ATTR_CATALOG is the combination of the

attributes {REL_NAME,ATTR_NAME}, because all relation names should be

unique and all attribute names with a particular relation should also be unique.

Key:

 There are different types of keys .they are

1. Super key 3. Primary key

2. Candidate key 4. Foreign key

CS 2255 – DATABASE MANAGEMENT SYSTEMS

31

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Super key:

 Set of one or more attributes that taken collectively, allow us to identify uniquely a

tuple or row in a table is known as super key.

 Eg: banking database. Cust_id, cust_name, cust_st.

Super key-- {cust_id} {cust name,cust_st}

 {cust_name,cust_id}

Candidate key:

 Super key for which no proper subsets are superkeys, such minimal superkeys are

candidate keys.

Eg:

 {cust_id}, {cust_name, cust_st}

Primary key:

 A single attribute is used to uniquely identify a row is called a primary key.

Eg: {cust_id}

Foreign key:

 In database, tables are related with each other thro’ a common attribute. An attribute

in a table that references an attribute in another table is called a foreign key.

Branch table Account table

Advantages:

 Structural independence

 Simplicity

 Easy implementation, design, usage.

 Flexible

Branch name

Branch city

Assets

Account umber

Branch name

Balance

CS 2255 – DATABASE MANAGEMENT SYSTEMS

32

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Disadvantages:

 Slower processing time than hierarchical and network models.

 Not good for transaction process compared to hierarchical and n/w model.

Relational Algebra:

 The data stored in the database are retrived using a query language. A query

Language is a language in which users requests information from the database.

There are two types of query language. They are

(i) Procedural (ii) non-procedural

Procedural:

 The user instructs the system to perform a sequence of operations on the database to

compute the derived results. (Relational algebra)

Non-procedural:

 The user describes the desired information without giving specific procedures for obtaining

that information. (Relational calculus)

Relational calculus

It is a formal query language where we can write one declarative expression to

specify a retrieval request and hence there is no description of how to retrieve it. A

calculus expression specifies what is to be retrieved rather than how to retrieve it.

Relational calculus is considered to be non procedural language.

i) The domain relational calculus

 The domain calculus differs from the tuple calculus in the type of variable used in

formulas, rather than having variable range over tuples, the variable range over single

values from domain of attributes.

 An expression of the domain calculus is of the form {x1, x2,….xn/ COND (x1,

x2,….xn, xn+1….. xn+m)}

 x1 , x2… are domain variable that range over domain of attributes.

 COND – condition or formula of the domain relational calculus. A formula is

made up of atoms.

1. An atom of the form R(x1,x2….xj) R – name of a relation of degree j.each xj, 1≤ i

≤ j is a domain variable. This atom states that a list of values of <x1,x2,….xj>

CS 2255 – DATABASE MANAGEMENT SYSTEMS

33

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

must be a tuple in the relation whose name in R. xi – value of the ith attribute

value of the tuple.

2. An atom of the form xi OP xj

OP is one of the comparison operators in the set {=, <, >, ≤, ≥, ≠} xi and xj are

domain variables.

3. An atom of the form xi OP C (or)

C OP xj

C – constant

Eg. Retrieve the birthdate and address of the employee whose name is ‘ABC’ {c,d

/ (a) (e) EMPLOYEE (a,b,c,d,e) and a = ‘ABC’}

 A = name

 B = Eid

 C = Dob

 D = address

 E = dno

{c, d / EMPLOYEE (‘ABC’ , b,c,d)}

Eg. Retrieve the name and address of all employees who work for the ‘Research’

department.

{a, d / (e)(p) (r) EMPLOYEE (a,b,c,d,e) and DEPARTMENT (pqr) and p =

‘Research’ and e = r)}

[p - dname q - dept location r – dept.number]

ii) The Tuple relational calculus:

 The tuple relational calculus is based on specifying a number of tuple variables.

 Each tuple variable usually ranges over a particular database relation, meaning

that the variable may take as it value any individual tuple from that relation.

 A simple tuple relational calculus query is of the form.

 {t/COND(t)}

t-tuple variable

COND(t)- conditional expression involving it.

 The result of such a query is the set of all tuples t that satisfy COND(t).

 Eg. To find all employees whose salary is above 50,000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

34

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

{t/EMPLOYEE(t) and t.Salary>50,000}

 Eg. To retrieve some of attributes.

{t.FNAME,t.NAME/EMPLOYEE(t) and t.salary>50,000}

a)Expressions and formulas

 A general expression of the tuple relational calculus of the form

{t.A1,t2.A2,…….tn.An/COND(t1,t2,….tn,tn+1….tn+m)}

 t1,t2,…tn,tn+1…tn+m-tuple variables

Ai-attribute of the relation on which t1 ranges.

COND is a condition or formula.

A formula is made up of predicate calculus atoms can be one of the following.

 An atom of the form R(ti)

R-relation name

ti-tuple variable

The atom identifies the range of the tuple variable ti as the relation whose

name is R.

 An atom of the form ti. A OP tj.B,OP is one of the comparison

operation{=,<,>,>=,<=,≠}ti and tj are tuple variables.

Where A- attributes of the relation on which ti ranges.

B-attributes of the relation on which tj ranges.

OP-Relational operator

 An atom of the form ti.A OP C or

 C OP tj.B

Where C- constant

Each of the preceding atoms evaluate to either TRUE OR FALSE for a

specific combination of tuples. This is called truth value of the atom.

b) Existential and Universal Quantifiers

 A tuple variable t is bound if it is quantified, meaning that it appear in an (

t) or (V t) clause otherwise it is free.

A tuple variabl in a formula as free or bound according to the following rules.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

35

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 An occurance of a tuple variable in a formula F that Is an atom is free in F.

 An occurrence of a tuple variable t is free or bound in a formula made up of

logical connective (F1 and F2) , (F1, or F2) not (F1) and not (F2) depending on

whether it is free or bound in F1 or F2.

 All free occurrence of a tuple variable t in F are bound in a formula F’ of the

forms

F’ = (T) (F) or F’= (t) (F)

 The tuple variable is bound to the quantifier specified inF’.

 If F is a formula, then (t) (F)

T – tuple variable

The formula (t) (F) is TRUE if the formula F evaluates to TRUE for

some (atleast one) tuple assigned to free occurrences of t in F’; otherwise

(t) (F) is FALSE.

 If F is a formula, then (t) (F)

T – tuple variable

The formula (t) (F) is TRUE if the formula F evaluates to TRUE for

some tuple assigned to free occurrences of t in F’; otherwise (t) (F) is

FALSE.

Eg. Retrieve the name and address of all employee who work for ‘Research’ department.

{t.Fname, t.Lname, t.Address/EMPLOEE (t) and (d) DEPARTMENT (d) and e.name =

‘Research’ and DNUMBER = t.DNO)}

Using the Universal Quantifier

 Eg. Find the names of employees who work on all the projects controlled by

department number 5.

{e.name, e.Fname/EMPLOYEE (e) and ((X) (not (project(x)) or not (X.DNUM = 5)

or ((w) (WORKS _ ON (w) and w.Eid = e.Eid and X.PNUMBER=w.PNO))))}

Safe expressions:

 A safe expression in relational calculus is one that is guaranteed to yield to a

finite number of tuples as a result otherwise the expression is called unsafe.

 Eg: {t/not (EMPLOYEE (t))}

CS 2255 – DATABASE MANAGEMENT SYSTEMS

36

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Is unsafe because it yield all tuples in the universe that are not EMPLOYEE

tuples, which are infinitely numerous.

 We can define safe expressions more precisely by introducing the concept of the

domain of a tuple relation calculus expression. This is the set of all values that either

appear as constant values in the expression or exist in any tuple of the relations reference

in the expression.

 An expression is said to be safe if all values in its result are from the domain of

the expression.

Relational Algebra:

 It’s a procedural language that consists of set of operations that take one or more relations

as input and produces new relation as output.

 Basic operations

 Additional operations

 Extended operations

Fundamental Operations

Basic operations:

* Select * Cartesian products

* Project * Intersection

* Union * Join

* Rename * Set difference

Union: U

 Let us consider two relations “Depositor” and “Borrower”. Union function includes all the

tuples that are either in depositor or borrower or in both. Duplicates are eliminated.

 Depositor Relation Borrower relation

Name CITY

 Hayes Pune

Johnson Mumbai

Jones Solapur

Smith Nashek

Name City

Adams Mumbai

Hayes Pune

Jackson Solapur

Smith Nashek

CS 2255 – DATABASE MANAGEMENT SYSTEMS

37

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Depositor U Borrower

Intersection: ∩

 This operation includes all the tuples that are in both depositor and borrower

relation. (i.e) tuples that is common in both the relations.

 Depositor ∩ borrower

Difference:

 Depositor – Borrower. It contains all tuples in depositor but not in borrower.

Cartesian product:

 It is also known as cross product or cross join.

Name City

Hayes Pune

Adams Mumbai

Johnson Mumbai

Jackson Solapur

Jones Solapur

Smith Nashek

Name City

Hayes Pune

Smith Nashek

Name CITY

Johnson Mumbai

Jones Solapur

Code Name

1 Mc.Grawhill

2 PHA

3 Pearsons

ID Title

1 DBMS

2 Compiler

CS 2255 – DATABASE MANAGEMENT SYSTEMS

38

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Code Name Id Title

1 Mc.Grawhill 1 DBMS

2 PHA 1 DBMS

3 Pearsons 1 DBMS

1 Mc.Grawhill 2 Compiler

2 PHA 2 Compiler

3 Pearsons 2 Compiler

Select: σ

 This operation selects the tuples that satisfy the given predicate (condition).

 σ <select condition> (R)

<select condition> <attribute name> <comparison operator> <constant value>

 < attribute name>

(R) -Name of the table.

Eg: σ year = 2000;

Id Title Author Year

1 DBMS Silberscatz 2000

2 networks Ferouzan 2000

Project: π

 Selects certain columns from the table while discarding others.

 Π <attribute list> (R)

Eg: π title, Arthur (book)

It displays the entire column title and Arthur from the relation table.

Select and Project operation:

Eg. Π title (σ price>300 (book))

This displays the title of the book having price greater than 300.

Rename:-

 Either the attribute or the relation or both can be renamed.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

39

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 ρs (new attribute names) (R) --- renames only the attribute

 Old relation

New relation. ρ s (R) --- renames only the relation

Additional operations:

 Natural join operation

 Assignment operation

 Division operation

Natural- join operation:

 It is a combines selection and Cartesian product into one operation. The difference

between Cartesian and natural join is selection operation is performed on the result of the

Cartesian product.

 Π empname, salary (σ emp.empcode ==salary.empcode (emp X salary))

Natural join query:

Π empname, salary (emp salary)

Division Operation: ÷ “for all”

 Two steps are involved in this operation. Let us consider banking example.

Empcode Empname

E 1 Hari

E 2 Om

E 3 Smith

E 4 Joy

Empcode Salary

E 1 2000

E 2 5000

E 3 7000

E 4 10000

Empname Salary

Hari 2000

Om 5000

Smith 7000

Joy 10000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

40

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Query:

 Find all the customers who have an account at all the branches located in Chennai.

 ACCOUNT

Account Branch name Balance

101 Alwarpet 5000

102 Pune 4000

201 T.Nagar 9000

215 Marine 7000

217 North town 75000

222 Palladam 7000

305 Hyderabad 3500

 Depositor

Cust name Accno

harris 102

Johnson 101

Jones 201

Laurel 217

Smith 222

Turner 215

Rodger 305

Branch

Branch name Branch city Assets

T.Nagar Chennai 7000

Alwarpet Chennai 8000

Marine Hyderabad 6000

North town Ramanathapuram 15000

palladam Hyderabad 9000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

41

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Step 1:

 Find all the branch names in Chennai.

 П branch name(σ branch city-“Chennai”(branch))

Branch name

Alwarpet

T.nagar

Step: 2

 Find all the customers in all the branches.

 П cust name, branch name(depositor account)

Step: 3 r2 ÷ r1

Assignment operator: ‘←’

 It works like assignment in programming language

Extended relational algebra operations:

 Generalized projections

 Aggregate function

 Outer join

Generalized functions:

 - Extended projection

 П fi,f2,f3….fn (E) where E is the relational algebra expression.

cust name branch

Johnson alwarpet

Harris Pune

Johnson T.nagar

Jones North town

Smith Marine

cust name

Johnson

CS 2255 – DATABASE MANAGEMENT SYSTEMS

42

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 П name, total/5 as percentage (student)

Aggregate function:

 -Takes a collection of value and return a single value. Eg. Sum, average, count-

distinct.

Empcode Name Salary Dept

1 Hari 10000 Comp

2 Om 7000 It

3 Smith 8000 Comp

4 Jay 5000 It

Ç sum (salary) (emp salary)

Ç avg (salary) (emp salary)

Ç count-distinct (dept) (emp salary)

Name percentage

Hari 70

Om 80

Jay 85

Smith 75

Roll no Name total

1 Hari 350

2 Om 400

3 Jay 375

4 Smith 425

salary

75000

salary

30000

dept salary

comp 18000

It 12000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

43

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Outer join:

 -Extension of join operation that deals with missing information.

 Emp empsalary

Name City Dept Salary

Hari Pune Comp 10000

Om Mumbai It 7000

Jay Solapur It 5000

Emp empsalary

Name City Dept Salary

Hari Pune Comp 10000

Om Mumbai It 7000

Jay Solapur It 5000

Smith Solapur Null null

Emp empsalary

Name City Dept Salary

Hari Pune Comp 10000

Om Mumbai It 7000

Jay Solapur It 5000

Bill null Comp 8000

Emp empsalary

Name City Dept Salary

Hari Pune Comp 10000

Om Mumbai It 7000

Jay Solapur It 5000

Smith Nashik Null Null

Bill null Comp 8000

Name City

Hari pune

Om Mumbai

Smith Nashik

Jay Solapur

Name Dept salary

Hari Comp 10000

Om It 7000

Bill Comp 8000

Jay It 5000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

44

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Modification of database:

* Delete:

 - removes the selected tuples from the database. Only tuples can be deleted not

values of any particular attribute.

 r r – E

employee employee - σ empname=”smith” (employee)

empsalary employee - σ dept=”IT” (empsalary)

* Insertion:

 r r U E

employee employee U { “John”, ”Nagpur”)}

employee empsal U {(“John” , “Computer”, 6000)}

* Updating:

 To change only one value in the tuple without changing all values in the tuple.

r r – E

 П fi,f2,f3….fn (r)

empsalary П empname, dept, sal*1.05(empsalary)

empsalary П name, dept, sal*1.05(σ sal<=6000(empsalary)) U

 П empname, dept, sal*1.03(σ sal>6000(empsalary))

SQL Fundamentals:

 The IBM developed the original version called “Sequel”. The Sequel language has changed to

“Structured Query Language”. In 1986 ANSI and ISO published a SQL standard called SQL – 86. The

most recent version is 2003.

SQL has several parts:

 Data Definition Language (DDL):

 It provides commands for defining schemas, defining relations and modifying relation schemas.

 Interactive Data Manipulation Language (DML):

 SQL DDL includes a query language based on both the relational algebra and the tuple relational

calculus. It includes also commands to insert tuples into, delete tuples from and modify tuples in the

database.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

45

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Integrity:

 The SQL DDL includes commands for specifying integrity constraints that the data stored in the

database must satisfy. Updates that violate integrity constraints are disallowed.

 View Definition:

 The SQL DDL includes commands for defining views.

 Transaction Control:

 SQL includes commands for specifying the beginning and ending of transactions.

 Embedded SQL and Dynamic SQL:

 They define how SQL statements can be embedded within general purpose programming

languages such as C, C++, and java, COBOL, Pascal and FORTRAN.

 Authorization:

 The SQL DDL includes commands for specifying access rights to relations and views.

Basic Structure:

 SQL allows the use of null values to indicate that value is either unknown or does not exist. It

allows a user to specify which attributes cannot be assigned null values.

 The basic structure of SQL consists of 3 clauses:

1. Select - It corresponds to the projection operation of the relational algebra. It is used to list the attributes

designed in the result of the query.

2. From - It corresponds to the Cartesian product operation of the relational algebra. It lists the relations to

be scanned in the evaluation of the expression.

3. Where - It corresponds to the selection operation of the relational algebra. It consist of predicate

involving attributes of the relations that appear in the from clause.

 Select A1, A2,…….An

 From r1, r2, ……….rm

 Where p;

The Select Clause:

 The select query can be used in different formats.

(*) select branch_name from loan;

 -the result is a relation consisting of a single attribute with the heading branch_name.

(*) select distinct branch_name from loan;

 - the duplicates present in the attribute branch_name will be eliminated.

(*) select all branch_name from loan;

 -duplicates will also be displayed. Since it is default it is not necessary to use “all” .

 The select clause may also contain expression involving the operators +, -, /, * operating on

constants or attributes of tuples.

 Select loan_no, branch_name, amount * 100 from loan;

CS 2255 – DATABASE MANAGEMENT SYSTEMS

46

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The Where Clause:

 SQL uses logical connectives “and “, “or “, “not “rather than mathematical symbols in

the where clause.

 Select loan_no

 From loan

 Where branch_name = “parris” and amount>1000;

 SQL includes a “between “comparison operator to simplify where clauses that specify

that a value <, > etc.

 Select loan_no select loan_no

 From loan from loan

 Where amount<=10000 and amount>= 9000 where amount between 9000 and 10000

The From Clause:

 The from clause by itself defines a Cartesian product of the relations in the clauses.

 Select cust_name, borrower.loan_no, amount

 From borrower, loan

 Where borrower.loan_no = loan.loan_no

 Relation name. Attribute name

 This query finds the name, loan_no, loan amount of all the customers who have a loan from the

branch.

 Select cust_name, borrower.loan_no, amount

 From borrower, loan

 Where borrower.loan_no = loan.loan_no and branch_name = “ Parris”;

This query finds the cust_name, loan numbers and loan amount for all the loans at the branch “ Parris”.

The Rename operation:

 SQL provides a mechanism for renaming both relations and attributes. For renaming, it uses “as”.

Syntax: oldname as newname

The “as” clause can appear in both the select and from clause.

 Select cust_name, borrower.loan_no as loan_id, amt

 From borrower, loan

 Where borrower.loan_no = loan.loan_no;

Tuple Variable:

 Tuple variables are most useful for comparing two tuples in the same relations.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

47

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Select distinct T. branch_name

 From branch as T, branch as S

 Where T.assets > S. assets and S. branch_city = “ Bangalore”;

This query is used to find the names of all branches that have assets greater than atleast one branch

located in “Bangalore”.

Select cust_name, T.loan_no, S.amount

From borrower as T, loan as S

Where T.loan_no = S. loan_no;

 This query is used to find all customers who have a loan from the bank, find their names, loan

numbers and loan amount.

String Operations:

 SQL specifies strings by enclosing them in single quotes for e.g. ‘Parris’. The most commonly a

used operation on strings is pattern matching using the operator “like”. The patterns can be described by

using two special characters.

% the % character matches any substring’

- The - character matches any character patterns are case sensitive.

‘Dbms%’ matches any strings beginning with dbms.

‘%idge% matches any string containing idge as substring. E.g. cartridge, bridge.

‘---‘ matches any substring of exactly 3 characters.

‘---%’ matches any string of atleast 3 characters.

 Select cust_name

 From customer

 Where cust_st like ‘% main’;

This query finds the names of all customers whose street address includes the substring ‘ main’.

Other operators are “escape”, “not like”, “similar to” etc.

Ordering the display of tuples:

 The order by clause causes the tuples to in result of a query to appear in sorted order.

 Select distinct cust_name

 From borrower, loan

 Where borrower. Loan_no = loan.loan_no and branch_name = ‘parris’

 Orderby cust_name;

This query lists the name of the customer in alphabetical order who have loan at the parris branch.

By default the orderby clause lists items in ascending order. To specify the sort order (i.e.) ascending or

descending we specify “asc” and “desc”.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

48

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Select *

 From loan

 Orderby amount desc, loan_no asc;

If several loans have the same amount, we order them in ascending order.

SET Operations:

 The following are the set operations.

 Union

 Intersect

 Except

Union operation:

 The following query finds all the customer having a loan, an account or both at the bank.

 (Select cust_name

 From depositor)

 Union

 (Select cust_name

 From borrower)

The union operation automatically eliminates duplicates. If duplicate relation should be allowed then

“union all” should be used instead of union.

 (Select cust_name

 From depositor)

 Union all

 (Select cust_name

 From borrower)

Fro e.g. if James has 3 accounts and 2 loans at same bank then there will be 5 tuples with the name James.

Intersection Operation:

 The following tuple is used to find all customers who have both a loan and an account at the bank.

 (Select distinct cust_name

 From depositor)

 Intersect

 (Select distinct cust_name

 From borrower)

 The intersect operation automatically eliminates duplicates. If the duplicates want to be retained

then use “intersect all”.

(Select distinct all cust_name

 From depositor)

 Intersect all

 (Select cust_name From borrower)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

49

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The number of tuples that appear in the result is equal to the minimum no of duplicates in both depositor

and borrower.

The Except operation:

 This query finds all the customers who have an account but no loan at the bank.

 (Select distinct cust_name

 From depositor)

 Except

 (Select cust_name

 From borrower)

The except operation automatically eliminate duplicates. To retain duplicates “except all” should be used.

 (Select cust_name

 From depositor)

 Except all

 (Select cust_name

 From borrower)

The number of duplicate copies of a tuple in the result is equal to the no of duplicate copies of the

tuple in depositor minus the no of duplicate copies of the tuple in borrower, provided that the difference is

positive.

Aggregate Function:

 Aggregate functions are function that take a collection of values as input and return a single value.

The 5 built in aggregate functions are

Average (avg)

Minimum (min)

Maximum (max)

Total (sum)

Count (count)

 The input to sum and avg must be a collection of numbers, but other operators can operate on

collections of non- numeric data types.

 Select avg (balance)

From account

 Where branch_name= ‘parris’

 This query is to find the average account balance at the ‘parris’ branch.

Select branch_name, avg (balance)

From account

 Groupby branch_name= ‘parris’

CS 2255 – DATABASE MANAGEMENT SYSTEMS

50

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

This query finds the average account balance at each branch.

 Select branch_name, avg (balance)

From account

 Groupby branch_name= ‘parris’

 Having avg (balance) > 1200

After grouping has been done, aggregate functions are used using having.

Null Values:

 The null values are used to indicate the absence of information about the value of an attribute.

 Select loan_no

 From loan

 Where amount is null.

To find all loan numbers that appear in the loan numbers that appear in the loan relation with null values

for amount.

How SQL handles Null values?

 If any of the input values is null then the result of an arithmetic expression is null.

 AND true and known unknown

 False and unknown false

 Unknown and unknown unknown.

 OR true or unknown true

 False or unknown unknown

 Unknown or unknown unknown

 NOT not unknown known

Nested Subqueries:

 A subquery is a select- from- where expression that is nested within another query. A common use

of subqueries is to perform tests for a set membership, make set comparisons and determine set

cardinality.

 Set membership:

 Select distinct cust_name

 From borrower

 Where cust_name in (select cust_name from depositor)

 The output of this query is the cust_name who are in borrower from bank and who appear in the

list of account holders.

 Select distinct cust_name

CS 2255 – DATABASE MANAGEMENT SYSTEMS

51

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 From borrower

 Where cust_name not in (select cust_name from depositor)

 Select distinct cust_name

 From borrower

 Where cust_name not in (‘smith’,’ jones’)

 Set comparison:

 Select distinct T.branch_name

 From branch as T, branch as S

 Where T.asset> S.asset and S. branch_city =’Brooklyn”

 This query finds the names of all branches that have assets greater than those of atleast one branch

located in Brooklyn.

 “some” greater than atleast one.

 Select branch_name

 From branch

 Where assets > some (select assets from branch where branch_city =’Brooklyn’)

Generates the set of all assets values for all branches in Brooklyn

Integrity:

 A value that appears in one relation for a given set of attributes also appears for a certain set of

attributes in another relation. This condition is called “referential integrity”.

Data Constraints:

1. Column level constraints:

Constraints are defined along with column definition. It can be applied to any column.

2. Table level constraints:

Constraint span across multiple columns. Data constraint attached to a specific column in a table

reference the content of another column in the table.

(i) Null value concept:

If a column lacks a data value or the value is unknown it is said to be null. It is not equivalent to

zero. If defines as not null then the user must enter a value.

(ii) Primary key concept:

 One or more columns in a table is/are used to uniquely identify each row in a table. The value

should not be null.

3. Unique key concept:

To ensure the information in the column for each record is unique. A table can have many unique

keys.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

52

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Create table cust(code number(5) primary key, name varchar (10) not null, addr varchar(30) not

null, licence no varchar(15) constraint ukln unique);

4. Default value concept:

If the column has some values to enter and left empty then it is assigned with a default value.

5. Foreign key concept:

 The foreign key represents relation between tables. Foreign key is related to primary key of

another table while referencing the data types should match.

 Create table depositor

(Cust_name char (20), account_no char (10), primary key (cust_name, accno), foreign key

(cust_name) references customer, foreign key(accno) references account)

6. Check integrity constraint:

 It defines a condition that every row must satisfy. There can be more than one check constraint in a

column. It can be defined both at column and table level constraint.

 Create table branch

 (Branch_name char (15), branch city char (30), assets integer, primary key (branch_name),

 check(assets>=0))

Assertions:

 An assertion is a predicate expressing a condition that the database always to satisfy.

 Create assertion <assertion name> check <predicate>

e.g.

 Create assertion sum- constraint check (not exits

 (Select * from branch where (select sum (amount) from loan

 Where loan.branch_name= branch.branch_name) > = (select sum (balance) from account

 where account.branch_name=branch.branch_name)))

Triggers:

 A trigger is a statement that the system executes automatically as a side effect of a modification of

a database. To design a trigger mechanism, we must meet two requirements.

 Specify when a trigger is to be executed. This is broken up into an event that causes the trigger to

be checked and a condition that must be satisfied for trigger execution to proceed.

 Specify the action to be taken when the trigger executes. The database stores triggers just as if

they were regular data, so that they are persistent and are accessible to all database operations. Whenever a

specified event occurs and corresponding condition satisfied the database executes the trigger.

Need For triggers:

 Consider the banking system, suppose that instead of allowing negative balances, the bank deals

with overdrafts by setting the account balance to zero and creating a loan in the amount of the overdraft.

The bank gives this loan a loan_no identical to the account no of the account.

 Suppose that Jones withdrawal of some money from an account made the account balance

negative. Let‘t’ denote the account tuple with a negative balance value. The actions to be taken are

CS 2255 – DATABASE MANAGEMENT SYSTEMS

53

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 insert a new tuple s in the loan relation with

o s[loan_no = t[accno]

o s[branch_name] = t[branch_name]

o s[amount] = -t[balance]

 insert a new tuple u in the borrower relation with

o u[cust_name] = “Jones”

o u[loan_no] = t[accno]

 set t[balance] to 0.

Thus for these reasons a trigger is needed to notify the changes made in the database.

Triggers in SQL:

 The triggering events and action can taken many forms

 The triggering event can insert and delete.

 For updates, the trigger can specify columns whose update causes the trigger to execute.

 Triggers can be activated before the event (insert/delete/update) instead of after the events.

 Instead of carrying out an action for each affected row, we can carry out a single action for the

entire SQL statement that caused the insert/delete/update.

When not to use trigger?

1. Triggers should be written with great care, since a trigger error detected at run time causes the

failure of the insert/delete/update statements that set off the trigger. The action of one trigger can set of

another trigger. In worst case this could even load to an infinite chain of triggering.

2. The insert action then triggers yet another insert action, and so on. Database systems typically

limit the length of such chains of triggers and consider longer chains of triggering an error

3. Triggers are occasionally called rules or active rules but should not be confused with datalog

rules.

Security:

 The data stored in the database need protection from unauthorized access and destruction or

alteration. The following are the ways in which data may be misused or made inconsistent and the

mechanism to guard against such occurrences

Security violations:

 Among the forms of malicious access are

 Unauthorized reading of data (theft of information)

 Unauthorized modification of data.

 Unauthorized destruction of data.

Database security:

 It refers to protection from malicious access. To protect the database security measures to be taken

at several levels.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

54

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

(i) Database systems:

Some database systems users may be authorized to access only a limited portion of the

database. Other users may be allowed to issue queries but not to modify the data. It is the

responsibility of the database system to ensure that these authorization restrictions are not

violated.

(ii) Operating Systems:

Weakness in operating system security may serve as a means of unauthorized access to the

database.

(iii) Network:

Since almost all db systems allow remote access through the terminals or networks,

software level security within the network software is an important as physical security,

both on internet and in private networks.

(iv) Physical:

Sites with computer systems must be physically secured against armed or entry by

intruders.

(v) Human:

Users must be authorized carefully to reduce the chance of any user giving access to a

intruder in exchange for a bribe or other favors.

Advanced SQL Features:

Create table extension:

 An application often requires creation of tables that have the same schema as an existing table.

SQL provides a “create table like “extension to support this task.

 Create table temp_account like account

The above statement creates a new table temp_account which has the same schema as account.

 When writing a complex query, it is often useful to store the result of a query as a new table, the

table is usually temporary. Two statements are required, one to create the table (with appropriate columns)

and the second to insert the query result into the table.

 SQL provides a simpler technique to create a table containing the results of a query. For example,

the following statements creates a table t1 containing the results of a query.

 Create table t1 as

 (Select *

 From account

 Where branch _name =’Perryridge”)

 With data

By default, the names and data types of the column are inferred from the query result. Names can

be explicitly given to the columns by listing the column names after the relation name. If the with data

class is omitted, the table is created but not populated with data.

 The above create table ….as statement closely resembles the create view statement and both are

defined by using queries. The main difference is that the contents of the table are set when the table is

created; where as the contents of a view always reflects the current query result.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

55

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

More on subqueries:

 SQL allows subqueries to occur whenever a value is required, provided the subquery is returns

only one value. Such subqueries are called scalar subqueries. For example a subquery can be used along

with select clause.

 Select cust_name

 (Select count (*)

 From account

 Where account.customer_name= customer.cust_name) as num_accounts

 From customers

The above example lists all the customers along with the number of accounts they own. This

subquery return only a single value since it has a count (*) aggregate without a groupby.

Subqueries in the form clause cannot normally access attributes of other relations in the form

clause. SQL supports a lateral clause that allows a subquery in the form clause to access attributes of

preceding subqueries in the form clause.

Thus the above query could be written alternatively

Select cust_name, num_accounts

From customer

 Lateral (select count (*)

 From account

 Where account.cust_name= customer.cust_name)

 As this_customer (num_accounts)

Advanced Constructs for Database Update:

 Update account set balance = balance +

 (Select amount

 From funds_received

 Where funds_received.account_number = account.account_number)

 Where exists

 (Select *

From funds_received

Where funds_received.account_number = account.account_number)

The condition in the where clause of the update ensures that only accounts with corresponding

tuples in funds_received are updated, while the subquery within the set clause computes the amount to be

added to each such account.

There is a table called “master table” where the updates are received a s a batch. It has to be

correspondingly updated. SQL provides a special construct, called the “merge” construct to simplify the

task of performing such merging of information. The above example can be expressed using merge as

follows

 Merge into account as A

 Using (select *

 From funds_received) as F

 On (A.account_number = F.account_number)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

56

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 When matched then

 Update set balance = balance+ F. amount

The merge statement can also have a when matched then clause, which permits insertion of new

records into the relation.

When not matched then

 Insert values (F.account_number, null, F.amount)

Embedded SQL

 Embedded SQL’s are SQL statements included in the programming language.

 Programming language in which the SQL statements are included is called the

Host language. Some of the host languages are

C,COBOL,PASCAL,FORTRAN,PL/I etc.

 This embedded SQL source code is submitted to an SQL precompiler, which

processes the SQL statements.

Embedded SQL features

1. Embedded SQL statements appear in the host language. SQL statements are

written in uppercase or lowercase.

2. Embedded SQL statements are prefixed by a delimiter EXEC SQL.

Embedded SQL statements extend over multiple lines, the host language,strategy

for statement continuation is used.

Every embedded SQL statement is terminated with a delimeter. In COBOL, it’s

END_EXEC.

In Adc,C,pascal,PL/I, it’s a semicolon.

SQL statements can include reference to host variables. Such reference must be

prefixed with a colon(:) to distinguish them from names of SQL objects like

column names.

Host variables and SQL colomns can have the same name.

Advantages of embedded SQL programs:

1. Mixing of SQL statements with the programming language statements is an

efficient way of merging the strength of two programming environment.

Programming language provides the flow of control, host variables, book

structure, conditional branching , loop facilities and input /output functions

etc.

SQL handles the database access and manipulation.

2. The use of the precompiler shifts the CPU intensive passing and optimization

to the development phase. So, the resulting executable program will be very

efficient in the CPU usage.

3. The program’s run-time interface to the private database routines is

transparent to the application programmer.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

57

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Dynamic SQL

 The dynamic SQL component of SQL allows programs to construct and submit

SQL queries at run time.

 In contrast, embedded SQL statements must be completely present at compile

time, they are compiled by the embedded SQL preprocessor.

 Using dynamic SQL, programs can create SQL queries as strings at run time and

can either have them executed immediately or have them prepared for subsequent

use.

 SQL defines standards for embedding dynamic SQL calls in a host language, such

as C, as in the following example.

Char*sqlprog = “update account set balance = balance * 1.05 where

account_n0=?”

EXEC SQL prepare dynprog from :sqlprog;

Char account [10] = “A-101”;

EXEC SQL execute dynprog using account

The dynamic SQL program contains a? , which is a place holder for a value that is

provided when the SQL program is executed.

Missing Information

How To Handle Missing Information Without Using Nulls

The person identified by Id is called Name and has the job of a Job, earning

Salary pounds per year.

1237 Davinder ? ?

1236 Cindy ? 70,000

1235 Boris Banker ?

1234 Anne Lawyer 100,000

Id Name Job Salary

That predicate is at best approximate.

VARCHAR(20) and that of Salary DECIMAL(6,0). But NULL isn’t a value of type

VARCHAR(20), nor of type DECIMAL(6,0).

Decompose into 2 or more tables by projection Also known as normalization.

Several degrees of normalization were described in the 1970s: 1NF, 2NF, 3NF, BCNF,

CS 2255 – DATABASE MANAGEMENT SYSTEMS

58

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

4NF, 5NF. The ultimate degree, however, is 6NF: “irreducible relations”. “Vertical”,

because the dividing lines, very loosely speaking, are between columns. It is fundamental

that the table to be decomposed can be reconstructed by joining together the tables

resulting from the decomposition.

Ultimate decomposition can be thought of as reducing the database to the simplest

possible terms. There should be no conjunctions in the predicates of the resulting tables.

Vertical decomposition removes “and”s. (The relational JOIN operator is the relational

counterpart of the logical AND operator.)

Vertical Decomposition of PERS_INFO

1237 Davinder

1236 Cindy

1235 Boris

1234 Anne

Id Name

1237 ?

1236 ?

1235 Banker

1234 Lawyer

Id Job

1237 ?

1236 70,000

1235 ?

1234 100,000

Id Salary

CALLED DOES_JOB EARNS

The person identified by Id is called Name.

The person identified by Id does the job of a Job

The person identified by Id earns Salary pounds per year.

The predicates for DOES_JOB and EARNS are still not really appropriate.

The purpose of such decomposition is to isolate the columns for which values

might sometimes for some reason be “missing”. If that Job column never has any

question marks in it, for example, then the idea of recombining DOES_JOB and

CALLED into a three-column table might be considered. By “never has any question

marks”, we really mean that at all times every row in CALLED has a matching row in

DOES_JOB and every row in DOES_JOB has a matching row in CALLED (and no row

in either table has a question mark).

 “Person 1234 earns 100,000”, “We don’t know what person 1235 earns”, and

“Person 1237 doesn’t have a salary” are different in kind.

The suggested predicate, “The person identified by Id earns Salary pounds

per year”, doesn’t really apply to every row of EARNS.

Views:

 A view is an object that gives the user a logical view of data from an underlying table or tables.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

59

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Create view V as < query expression>

Create view allcust as

(Select branch_name, cust_name

From depositor, account

Where depositor.accno = account.accno)

 Union

 (Select branch_name, cust_name

From borrower.loan

Where borrower.loan_no = loan.loan_no)

 This query creates a view named allcust where we can view the names of the customer who is a

depositor and in the loan account.

Introduction to Distributed Database Architecture

A distributed database system allows applications to access data from local and remote databases.

In a homogenous distributed system, each database is an Oracle database. In a heterogeneous distributed

system, at least one of the databases is a non-Oracle database. Distributed database uses client-server

architecture to process information requests.

 Homogenous Distributed Database Systems

 Heterogeneous Distributed Database Systems

 Client-Server Database Architecture

Homogenous Distributed Database Systems

A homogenous distributed database system is a network of two or more Oracle databases that

reside on one or more machines. Figure 30-1 illustrates a distributed system that connects three databases:

HQ, MFG, and SALES. An application can simultaneously access or modify the data in several databases

in a single distributed environment. For example, a single query on local database MFG can retrieve

joined data from the PRODUCTS table on the local database and the DEPT table on the remote HQ

database.

For a client application, the location and platform of the databases are transparent. You can also

create synonyms for remote objects in the distributed system so that users can access them with the same

syntax as local objects. For example, if you are connected to database MFG yet want to access data on

database HQ, creating a synonym on MFG for the remote DEPT table allows you to issue this query:

SELECT * FROM dept;

In this way, a distributed system gives the appearance of native data access. Users on MFG do not

have to know that the data they access reside. s on remote databases.

http://download.oracle.com/docs/cd/A87860_01/doc/server.817/a76965/ds_conce.htm#12207
http://download.oracle.com/docs/cd/A87860_01/doc/server.817/a76965/ds_conce.htm#12244
http://download.oracle.com/docs/cd/A87860_01/doc/server.817/a76965/ds_conce.htm#12312
http://download.oracle.com/docs/cd/A87860_01/doc/server.817/a76965/ds_conce.htm#15768

CS 2255 – DATABASE MANAGEMENT SYSTEMS

60

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Figure 30-1 Homogeneous Distributed Database

An Oracle distributed database system can incorporate Oracle databases of different versions. All

supported releases of Oracle can participate in a distributed database system. Nevertheless, the

applications that work with the distributed database must understand the functionality that is available at

each node in the system--for example, a distributed database application cannot expect an Oracle7

database to understand the object SQL extensions that are only available with Oracle8i.

Heterogeneous Distributed Database Systems

In a heterogeneous distributed database system, at least one of the databases is a non-Oracle

system. To the application, the heterogeneous distributed database system appears as a single, local,

Oracle database; the local Oracle server hides the distribution and heterogeneity of the data.

The Oracle server accesses the non-Oracle system using Oracle8i Heterogeneous Services and a

system-specific transparent gateway. For example, if you include a DB2 database in an Oracle distributed

system, you need to obtain a DB2-specific transparent gateway so that the Oracle databases in the system

can communicate with it.

Client-Server Database Architecture

A database server is the Oracle software managing a database, and a client is an application that

requests information from a server. Each computer in a network is a node that can host one or more

databases. Each node in a distributed database system can act as a client, a server, or both, depending on

the situation.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

61

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The host for the HQ database is acting as a database server when a statement is issued against its

local data (for example, the second statement in each transaction issues a statement against the local

DEPT table), but is acting as a client when it issues a statement against remote data (for example, the

first statement in each transaction is issued against the remote table EMP in the SALES database).

Figure 30-2 An Oracle Distributed Database System

CS 2255 – DATABASE MANAGEMENT SYSTEMS

62

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Question Bank

2 Mark Questions:

1. What is Relational Algebra?

2. What is Relational Calculus?

3. How does Tuple-oriented relational calculus differ from domain-oriented

relational calculus

4. How ‘Natural – Join’ operation is performed?

5. Why is a key essential? Write the different types of keys.

6. List the various join relations.

7. Define the term tuple

8. What is the difference between primary key and foreign key.

9. State the various operators used in relational algebra.

10. What is the difference between a key and a superkey

11. List the operations in relational algebra.

12. Define Query language. Give the classification of query language.

13. Distinguish between primary key and candidate key.

14. What is a view and how is it created? Explain with an example.

15. In what way is an embedded SQL different from SQL? Discuss.

16. What is embedded SQL? Explain briefly.

17. Name the different types of Joins supported in SQL.

18. What is static SQL? How does it differ from dynamic SQL?

19. Mention the advantages of embedded SQL?

20. Which condition is called referential integrity? Explain its basic concepts.

21. What is triggers in SQL?

22. Write about Assertions.

23. What are the different types of integrity constraints used in designing a relational

database?

24. With an example explain referential integrity.

25. What is Domain Integrity Constraints? Give example

26. What are Entity Integrity Constraints?

27. Mention the different levels of security.

28. List out the forms of authorization on parts of the database.

16 Mark Questions

1. What are the relational algebra operations supported in SQL? Write the SQL

statement for each operation.

2. Briefly explain about fundamental, additional operations in relational algebra with

example?

3. Briefly explain about the modification of the database?

4. Explain about basic structure of SQL with example.

5. Write the Query using the following.

Order by clause, in, not in, exist, as clause.

6. Briefly explain about set operations and aggregate functions.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

63

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

UNIT III - DATABASE DESIGN

Functional dependencies

 A functional dependency is a type of constraint that is a generalization of the

notion of key.

Definition

 Consider a relation schema ‘R’ & let α c R & β c α.

The functional dependency α →β holders on schema ‘R’ , if in any Legal relation

r(R), for all pairs of tuples t1 & t2 in r such that,

t1[α]= t 2[α], it’s also the care that t1[β]=t2[β]

 Using the functional dependency notation, use say that ‘k’ us a superkey of R if

K→R.

t1[k]=t2[k] it is also that,

t1[R]=t2[R] (i.e. t1=t2)

Consider the schema

Loan_info= (loan_no, branc_name, customer_name, amount)

The set of functional dependencies that hold on this relation are :

 Loan-no → branch-name

Loan-no → amount

There is no functional dependency:

Loan- no → customer – name

As a giver loan can be made to more than 1 customers.

Use of functional dependencies:-

1. To test relation to see whether they are legal under a given set of functional

dependencies. If a relation ‘r’ us legal under a set ‘F’ of functional dependencies,

we say that ‘r’ satisfies F.

2. To specify constraints on the set of legal relations. If we wish to constrain

ourselves to relations on schema R that satisfy a set F of functional dependencies,

we say that F holds on K.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

64

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Let R be a relation on the relation scheme R. then R satisfies the functional dependency

x Y if a given set of values for each attribute in X uniquely determines each of the

values of the attributes in Y. Y is said to be functionally dependent on X. The

functional dependency (FD) is denoted as X Y, where X is the left hand side or the

determinant of the FD and Y is the right hand side of the FD>

A functional dependency X Y is said to be trivial if Y X.

In order to verify if a given FD X Y is satisfied by a relation R on a relation scheme

R we find any two tuples with the same X value; if the FD X Y is satisfied in R then

the Y values in these tuples must be the same. We repeat this procedure until all pairs of

tuples with the same X value are examined. Another approach involves ordering the

tuples of R on the X values so that all tuples with the same X values are together. Then

it is easy to verify if the corresponding Y values are also same and verify if R satisfies

the FD X Y.

Example 1:- consider following relation ‘schedule’ given in fig.

For the above relation, the FD course Prof is satisfied. However, the FD prof

 Course is not satisfied, as one professor can teach to more than one course.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

65

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Closure of a set of functional Dependencies:-

 The set of functional dependencies that is logically implied by ‘F’ is called the

closure of F & is written as F+

Definition

 If F is a set of FDs on a relation scheme R, then F
+
, the closure of F, is the

smallest set of FDs such that F
+

 F and no FD can be derived from F by using

the inference axioms that are not contained in F
+
.

 Suppose we are given a relation schema R = (A,B,C,G,H,I) & the set of functional

dependencies:

A → B

A → C

CG →H

CG → I

B → H

The functional dependency

A → H is logically implied.

Proof:

A → B and B → H A → H

 Given F, we can compute F directly from the formal definition of functional

dependency, If ‘F’ is large, this process would be lengthy, Axioms (or) rules of

inference, provide a simpler technical for reasoning about functional

dependencies.

 Armstrong’s Axioms :-

 We can use following three rules to find logically implied functional

dependencies. This collection of rules is called Armstrong’s Axioms in honor of

the person who first proposed it.

1. Reflexivity Rule : If ‘α’ is set of attributes & β c α, then α→ β holds.

2. Augmentation Rule : If α-> β holds and y is a set of attributes, then yα ->yβ

holds.

3. Transitivity Rule: If α-> β holds and β->y holds, then α->y holds.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

66

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Armstrongs axioms are sound, because they do not generate any incorrect

functional dependencies.They are complete, because for a given set ‘F’ of functional

dependencies they allow us to generate all F
+
.

Additional Rules:

 Although Armstrong’s axioms are complete, it is tiresome to use them directly for

the computation of F
+
. To simplify further, we list additional rules.

1. Union Rule: If α-> β holds and α->y holds, then α-> βy holds.

2. Decomposition Rule: If α-> βy holds, then α-> β holds and α->y holds.

3. Psuedo transitivity rule: If α-> β holds and x β->δ holds, then αy-> δ holds.

Consider schema R= (A,B,C,G,H,I), and Set of FDS (A->B,A->C, CG->H,CG->I,B->H)

Some of members of F
+

are:
 A->H : By Transitivity rule

 A->B andB->H therefore B->H

 CG->HI

CG->H and CG->I

 Therefore by union rule

CG->HI

 AG->I:

A->C and CG->I

 By Psudotransistivity Rule

AG->I

OR

 A->C

 By Augmentation Rule

AG->CG and CG->I

 By Transitivity Rule

AG->I

Canonical cover

 A canonical cover FC for F is a set of dependencies such that ‘F’ logically implies all

dependencies in FC and FC logically all in F. FC must have the following properties

CS 2255 – DATABASE MANAGEMENT SYSTEMS

67

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

1. No functional dependency in Fc contains an extraneous attribute.

2. Each Left side of functional dependency in Fc is unique. That is no two

dependencies α 1 α →β →β1 & α2 →β2 in Fc such that α 1= α2.

Extraneous Attributes

 An attribute of a functional dependency is said to be extraneous if we can remove it

without changing the closure of the set of functional dependencies. The formal definition

of extraneous attributes is as follows:

 Consider a set F of functional dependencies & the functional dependency α →β in F

1. Attribute ‘A’ is extraneous in α if Aeα, & F Logically implies

(F- {α →β}) U {(α-A)->β}

2. Attribute ‘A’ is extraneous in β if AeB & the set of functional dependencies

 (F-- {α →β}) U {(α ->) B-A} logically implies F.

For ex. Suppose we have FDs AB->C & AC then A C in F. then B is extraneous in

 AB->C.

Another example is, suppose the set F contains FDs AB CD and A C. Then C

would be extraneous in AB CD.

Canonical cover for a set of functional dependencies F can be constructed as follows:

 Fc = F

Repeat

 Use the union rule to replace any dependencies in Fc of the form α1 β1 and α1

 β1 with α1 β1 β2

 find a FD α β in Fc with an extraneous attribute either in α or in β.

 If an extraneous attribute is found, delete it from α β

 Until Fc does not change.

Example 2: consider the following set F of functional dependencies on schema (A,B,C).

A BC

B C

A B

AB C.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

68

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The canonical cover for F is computed as follows:

 There are two FDs with the same set of attributes on the left side of the arrow:

A BC

A B

 Combine these FDs into A BC

 A is extraneous attribute in AB C because F logically implies

(F – {AB C}) U {B C). This assertion is true because B C is already in

our set of FDs.

 C is extraneous in A BC because F logically implies (F – {A BC}) U {A

B}. This assertion is true because A B is already in our set of FDs.

Thus, our canonical cover is,

 A B

 B C.

NORMALIZATION

 It’s an essential part of database design

 A good understanding of the semantics of data helps the designer to

build efficient design wins the concept of normalization.

Purpose of normalization

1. Minimize redundancy in data

2. Remove insert, delete & update anamoly during database activities

3. Reduce the need to reorganize data when its modified or enhanced.

4. Normalization reduces a complex user view to a set of small & stable

subgroups of fields/relations this process helps to design a logical data

model known as conceptual data model.

Normalization forms

Different normalization forms are:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

69

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

1. First normal form (1NF):

 A relation is said to be in the first normal form it it’s already in

normalized form & it has no repeating group.

2. Second normal form (2NF):

 A relation is said to be in the second normal form it it’s already in

first normal form & it has no partial dependency.

3. Third normal form (3NF):

 A relation is said to be in the third normal form it it’s already in

second normal form & it has no transitive dependency.

4. Boyce-codd normal form (BCNF):

 A relation is said to be in BCNF if it’s already in the third normal

form & every determinant is a candidate key it’s a stronger version of

third normal form.

5. Forth normal form (4NF):

 A relation is said to be in the forth normal form it it’s already in

BCNF & it has no multivalued & dependency.

6. Fifth normal form (5NF):

 A relation is said to be in fifth normal form if it’s already in 3NF

form and it has no join dependency.

Different Terminologies:-

 The different terminologies used in various normal forms are explained below:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

70

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

1. Partial dependency :-

 In a relation having more than one key field , a sunset of non-key fields may

depend on all the key fields but another sunset / a particular non – key field may

depend on only one of the key fields (i.e. may not depend on all the key fields).

Such dependency is called partial dependency.

2. Tramitive dependency

 In a relation, there may be dependency among non- key fields. Such dependency

is called as transitive dependency.

3. Determinant :-

 A determinant is any field (simple field (or) composite field) on which some other

fi3eld is fully functionally dependent.

4. Multivalued dependency :-

 Consider X,Y & Z in relation. If for each value of X, there is well defined set of

values of Y & set of values of Z & the set of values of Y is independent of the set

of values of Z, then multivalue d dependency exists.

i.e. X →→Y/Z

5. Join dependency :-

 A relation which has a join dependency cannot be decomposed by projection into

other relation without any difficulty & undesirable results.

First normal form:

2) customer (Cust-No, Cust-name, Cust-Add)

3) customer-Book (cust-No, ISBN, Title, Author - Name, Author-country, Qty,

unit-price)

Now each of the above relations (i.e. relation 2 & relation 3 is in 1NF).

CS 2255 – DATABASE MANAGEMENT SYSTEMS

71

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Second normal form

 Second normal form removes partial dependency among attributes of relation.

 In relation 2, the normal form of key fields is only one & hence there is no scope

for partial dependency.

 The absence of partial dependency in relation 2 takes it into second normal form

without any modification.

 In relation 3, the normal form of key fields are two. The dependency diagram or

Relation 3 is shown below:

Dependency diagram of Relation 3

←

 Dependency diagram of Relation 3

 Qty depends on Cust - No & ISBN, but the remaining non-key fields (Title,

Author- country, unit-price) depend only on ISBN. Thus, there exists partial

dependency.

 The existence of Partial dependency will result into

1. Insertion

2. Update

3. Deletion Anomaly

 Cust_No

Title

Author_Name

Author_Country

Unit_Price

ISBN
Qty

CS 2255 – DATABASE MANAGEMENT SYSTEMS

72

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

1. Insertion Anomaly :-

 In Relation 3, if we want to insert data of a new book (ISBN, Title,

Author – Name, Author – Country, Unit – Price) there must be atleast

one customer. This means that the data of a new book can be entered

into Relation 3 only when the first customer buys the book.

2. Update Anomaly :-

 In relation 3, If we want to change any of the non-key fields like Title,

Authore – name, it will result into inconsistency because the same is

available in more than one record.

3. Deletion Anomaly :-

 In Relation 3, if book is purchased by only one customer, then the

book data will be lost when we delete that record after fully satisfying

that customer order.

Hence, Relation 3 in divided into 2 Relations:-

4) Salas (Cust - No , ISBN , Qty)

5) Book - Auther (ISBN ,Title, Author-name, Author - country, unit -

Price)

Relation 4&5 are now in second normal form.

Third Normal Form (3NF)

 Third normal form removes transitive dependency among attributes of relation.

 In relation 4, there is only one nonkey field. So, there is no question of

dependency between non – key fields. Thus, there is no transitive dependency. Hence

Relation 4 is in 3NF.

 In relation 2, there is no dependency between the non – key fields. This means

that it has no transitive dependency. Hence, Relation 2 is also in 3NF.

 In relation 5, author’s country depends on author name. This means that Relation

5 has transitive dependency. The dependency diagram is shown in fig

CS 2255 – DATABASE MANAGEMENT SYSTEMS

73

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The existence of transitive dependency will result into insert, update and delete anomaly:

Insertion anomaly:

 Consider the book company has resident authors who are n the process of

developing new books, it will be difficult to include the author’s details in Relation 5.

This means that there should be at least one published book to insert the details of a

resident author.

Update anomaly:

 If author’s country is to be modified, then it is necessary to modify number of

tuples as the same data is in number of tuples.

Deletion anomaly:

 If the only one book of a resident author is not reprinted, then the respective

author’s data will be lost. Hence, to over come all these anomalies, Relation 5 is

subdivided into two relations:

 6) Book (ISBN, Title, Unit_Price, Author_Name)

 7) Author (Author_Name, Author _ country)

 In Relation 6, Author_Name is underlined with dotted line to indicate that it is a

foreign key.

Boyce – Codd Normal Form (BCNF)

 BCNF is more rigorous form of 3NF. It deals with relational tables which has

multiple candidates keys, composite candidate keys, and candidate keys that overlapped.

BCNF is based on the concept of determinant. A determinant is a column on which some

of the columns are fully functional dependent. A relational table is in BCNF if every

determinant is candidate key.

Case 1: Multiple candidate keys

Consider following relational table

CS 2255 – DATABASE MANAGEMENT SYSTEMS

74

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

A# Aname Aqualification Astatus TitleID Royalty

100 Arora Ph.D 10 T1 3000

110 Sharma M.Tech 20 T2 4000

A relational table

Suppose Author’s status (Astatus) depends on his / her qualification. If author is Ph.D

his status (Astatus) is 10, if M.Tech it is 20 and so on. This relation has three

determinants: A#, TitleID, Aqualification. But only (A#, TitleID) combination is a

candidate key; so this relation is not in BCNF. For a relation to be in BCNF each

determinant must be a candidate key.

Case2: Composite Candidate Keys

 Suppose there are three relations as given below:

A# Title ID Royalty

A1 T1 5000

A2 T2 7000

Fig:- Author – title table

A# Title ID Royalty

A1 John Ph.D

A2 Tom M.Tech

Fig:- Author Table

Aqualification Astatus

Ph.D 10

M.Tech 20

B.Tech 30

Others 40

Fig:- Author – qualification – status table

 Author – title table has one determinant (A#, TitleID). It is also a

candidate key so the relation is in BCNF.

 Author table has one determinant A# and it is also a candidate key so

Author is in BCNF.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

75

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Similarly Author – qualification – status is also in BCNF.

Case 3: Candidate keys that overlapped

 Consider following relation

A# Aname Title ID Royalty

A1 John T1 3000

A2 Tom T2 4000

Fig: Author Table

Suppose that each Author’s name is unique. Then in above relation, the keys are:

(A#, Title ID), and (AName, TitleID). These are two determines A# and Aname. The

attributes of each possible relation which we can make out of the original relation (A#,

Aname, TitleID, Royalty) must depend on these two determines (A#, Aname). But the

attributes of relation (A#, Aname) does not depend on the determinant since each A# and

Aname is independent of the other. Hence the relation Author is not in BCNF. But this

relation is in Third Normal Form. So a relation which is in Third Normal Form need not

be in BCNF, but the converse is true. So BCNF is stronger than the 3NF.

Multivalued Dependencies and Fourth Normal Form

Formal Definition of Multivalued Dependency

 Formally, a multivalued dependency (MVD) X Y specified on relation schema

R, where X and Y are both subsets of R, Specifies the following constraint on any

relation state r of R: If two tuples t1 and t2 exist in r such that t2[X] = t2[X], then two

tuples t3 and t4 should also exist r with the following properties.

 T3[X] = t4[X] = t1[X] = t2[X]

 T3[Y] = t1[Y] = t4[Y] = t2[Y].

 T3[Z] = t2[Z] = t4[Z] = t1[Y].

CS 2255 – DATABASE MANAGEMENT SYSTEMS

76

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Fig 15.4 Fourth and fifth normal form. (a) The EMP relation with two MVDs:

ENAME PNAME AND ENAME DNAME. (b) Decomposing EMP into two

relation in 4NF. (c) The relation SUPPLY with no MVDs satisfies 4NF but does not

satisfy 5NF if the JD(R1, R2, R3) holds. (d) Decomposing SUPPLY into three NF

relations.

 Whenever X Y holds, we say that X multidetermines Y. Because of the

symmetry in the definition, whenever X Y holds in R, so does X Y. Hence, X

 Y implies X Z, and therefore it is sometimes written as Z Y | Z.

 The formal definition specifies that, given a particular value of X, the set of

values of Y determined by this value of X is completely determined by X alone and does

not depend on the values of the remaining attributes Z of R. Hence, Whenever two tuples

CS 2255 – DATABASE MANAGEMENT SYSTEMS

77

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

exist that have distinct values of Y but the same value of X, these vales of Y must be

repeated in separate tuples with every distinct value of Z that occurs with that same value

of X. This informally corresponds to Y being a multivalued attribute of the entities

represented by tuples in R.

 In fig 15.4(a) the MVDs ENAME PNAME and ENAME DNAME (or

ENAME PNAME | DNAME) hold in the EMP relation. The employee with ENAME

‘smith’ works on projects with PNAME ‘X’ and ‘Y’ and has two dependents with

DNAME ‘John’ > and <’smith’ , ‘Y’, ‘Anna’>), we would incorrectly show associations

between project ‘X’ and ‘John’ and between project ‘Y’ and ‘Anna’; these should not

other two tuples (<’smith’ , ‘X’, ‘Anna’ > and <’smith’, ‘Y’ , ‘John’>) to show that {‘X’,

;Y’} and {‘John’ , ‘Anna’} are associated only with ‘smith’; that is, there is no

association between PNAME and DNAME which means that the two attributes are

independent.

 An MVD X Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X U

Y = R. For example, the relation EMP_PROJECTS in Fig 15.4 (b) has the trivial MVD

ENAME PNAME. An MVD that satisfies neither (a) nor (b) is called a nontrivial

MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because it

does not specify any significant or meaningful constraint on R.

Inference Rules for Functional and Multivalued Dependencies:

 Assume that all attributes are included in a “universal” relation schema R

= {A, A2,…..An} and that X, Y, Z and W are subsets of R.

IR1 (reflexive rule for FDs) : If X Y, then X Y.

IR2 (augmentation rule for FDs): {X Y} |= XZ YZ.

IR3 (transitive rule for FDs) : {X Y, Y Z} |= X Z.

IR4 (complementation rule for MVDs) : {X Y} |= {X (R – (X U Y))}.

IR5 (augmentation rule for MVDs): If X Y and W Z then WX YZ.

IR6 (transitive rule for MVDs): {X Y, Y Z} |= X (Z – Y).

IR7 (replication rule for FD to MVD): {X Y} |= X Y.

IR8 (Coalescence rule for FDs and MVDS): If X Y and there exists W with the

properties that (a)

W Y is empty, (b) W --> Z, and (c) Y Z, then X Z.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

78

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6 are

inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs.

Fourth Normal Form

 A relation schema R is in 4NF with respect to a set of dependencies F (that

includes functional dependencies and multivalued dependencies) if, for every nontrivial

multivalued dependency X Y in F
+
, X is superkey for R.

 The EMP relation of fig 15.4 is not in 4NF because in the nontrivial MVDs

ENAME PNAME and ENAME DNAME , ENAME is not a superkey of EMP.

We decompose EMP into EMP _ PROJECTS and EMP _ DEPENDENTS , shown in fig

15.4 (b). Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the

MVDs. No other nontrivial MVDs hold in either EMP_PROJECTS or

EMP_DEPENDNETS.

 The EMP relation with an additional employee, ‘Brown’, who has three

dependents (‘Jim’, ‘Joan’, and ‘Bob’) and works on four different projects (‘W’,’X’,’Y’,

and’Z’). There are 16 tuples in EMP in fig 15.5(a). If we decompose EMP into

EMP_PROJECTS and EMP_DEPENDENTS, as shown in fig 15.5 (b), we need to store a

total of only 11 tuples in both relations. Not only would the decomposition save on

storage, but also the update anomalies associated with multivalued dependencies are

avoided. For example, if Brown starts working on another project, we must insert three

tuples in EMP ------- one for each dependent. If we forget to insert any one of those , the

relation violates the MVD and becomes inconsistent in that it incorrectly implies a

relationship between project and dependent.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

79

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The EMP relation in Fig is not in $NF, because it represents two

independent 1:N relationships ---- one between employees and the projects they work on

and the other between employees and their dependents. We sometimes have a

relationship between three entities that depends on all three participation entities, such as

the SUPPLY relation shown in Fig 15.4(c). (Consider only the tuples in Fig 15.4 (c)

above the dotted line for now). In this case a tuple represents a supplier supplying a

specific part to a particular project, so there are no nontrivial MVDs. The SUPPLY

relation is already in 4NF and should not be decomposed. Notice that relations

containing nontrivial MVDs tend to be all key relations – that is, their key is all their

attributes taken together.

Join Dependencies and Fifth Normal Form

 A Join dependency (JD), denoted by JD(R1, R2, …., Rn), specified on relation

schema R, specifies a constraint on the states r of R. The constraint states that every

legal state r of R should have a lossless join decomposition into R1, R2, …… , Rni that

is, for every such r we have

 (πR1 (r) , πR2(r), …… πRn (r)) = r

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted as JD (

R1, R2) implies an MVD (R1 R2) (R1 - R2) (or by symmetry, (R1 R2) (R2 -

R1)). A Join dependency JD (R1, R2, …….Rn), specified on relation schema R, is a

trivial JD if one of the relation sehemes Ri in JD (R1, R2, …….Rn) is equal to R. Such a

CS 2255 – DATABASE MANAGEMENT SYSTEMS

80

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

dependency is called trivial because it has the lossless join property for any relation state

r of R and hence does not specify any constraint on R. We can now define fifth normal

form, which is also called project – join normal form. A relation schema R is in fifth

normal form (5NF) (or project – join normal form (PJNF)) with respect to a set F of

functional, multivalued, and join dependencies if, for every nontrivial join dependency

JD (R1, R2, …….Rn) in F+ (that is, implied by F), every Ri is a superkey of R.

Question Bank

2 Mark Questions:

1. What is normalization?

2. What is Functional Dependency?

3. When is a functional dependency F said to be minimal?

4. What is Multivalued dependency?

5. What is Lossless join property?

6. What is 1 NF (Normal Form)?

7. What is Fully Functional dependency?

8. What is 2NF?

9. What is 3NF?

10. What is BCNF (Boyce-Codd Normal Form)?

11. What is 4NF?

12. What is 5NF?

13. What is Domain-Key Normal Form?

14. What is join dependency and inclusion dependency?

16 Mark Questions

1. What is normalization? Explain 1NF,2NF with example.

2. Explain 3NF and BCNF with example.

3. What is FD? Explain the role of FD in the process of normalization.

4. Compare BCNF and 3NF.

5. Explain Canonical cover with example.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

81

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

UNIT –IV TRANSACTIONS

Transaction:

 Collections of operations that form a single logical unit of work are called transactions.

Transaction concept:

 A transaction is a unit of program execution that accesses and possibly updates various

data items. A transaction is initiated by a user program written in a high level data manipulation

language or programming language, where it is delimited by statements of the form begin

transaction and end transaction. The transaction consist of all the operations executed between

the begin transaction and the end transaction.

 To ensure integrity of data, the database system should maintain the following properties of the

transactions.

Atomicity:

 Either all operations of the transactions are reflected properly in the database or none are.

Consistency:

 Execution of a transaction in isolation preserves the consistency of the database.

Isolation:

 Even though multiple transactions may execute concurrently, the system guarantees that,

for every pair of transactions Ti and Tj , it appears to Ti that either Tj finished execution before

Ti started, or Tj started execution after Ti finished. Thus each transaction is unaware of other

transactions executing concurrently in the system.

Durability:

 After a transaction completes successfully, the changes it has made to the database persit,

even if there are system failures.

These properties are often called the ACID properties.

 Consider banking system consisting of several accounts and a set of transactions that

access and update those accounts. Transactions access data using two operations.

 Read(X) transfers the data item X from the database to a local buffer belonging to the

transaction that executed the read operation.

 Write(X) transfers the data item X from the local buffer of the transaction that

executed the write back to the database.

Let Ti be the transaction that transfers $50 from account A to B. this transaction can be

defined as

CS 2255 – DATABASE MANAGEMENT SYSTEMS

82

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Consistency:

 The consistency requirement here is that the sum of A and B be unchanged by the

execution of the transaction. If the database is consistent before an execution of the transaction, the

database remains consistent after the execution of the transaction.

Atomicity:

 Suppose that just before the execution of transaction Ti the values of accounts A and B

are $ 1000 $ 2000, resp. Now suppose that during the execution f the transaction Ti, a failure

occurs after the write(A) operation but before Write(B) operation, that prevents Ti from

completing its execution successfully(power failures, hardware failures, and s/w errors), in this

case the values of accounts A and B reflected in the database are $950 and $2000. The system

destroyed $50 as a result of this failure. The sum A+B is no longer preserved. Such a state is

known as inconsistent state.

 If the atomicity property is present, all actions of the transaction are reflected in the

database or none are. The basic idea behind ensuring atomicity is, the database system keeps track

of the old values of any data on which a transaction performs a write, and if the transaction does

not complete its execution, the database system restores the old values to make it appear as though

the transaction never executed.

 Ensuring atomicity is the responsibility of the database system itself. It is handled by a

component called the transaction-management component.

Durability:

 The durability property guarantees that, once a transaction completes successfully all

updates that it carried out on the database persist, even if there is a system failure after the

transaction completes execution. Durability is guaranteed by ensuring either

1. The updates carried out by the transaction have been written to disk before the transaction

completes.

2. Information about the updates carried out by the transaction and written to disk is sufficient

to enable the database to reconstruct the updates when the database system is restarted after

failure.

 Ensuring durability is the responsibility of a component of the database system called the

recovery-management component.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

83

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Isolation:

 Even if the consistency and atomicity properties are ensured for each transaction, if

several transactions are executed concurrently, their operations may interleave in some

undesirable way, resulting in an inconsistent state. A way to avoid the problem of concurrently

executing transactions is to execute transactions serially, that is one after the other.

 The isolation property of a transaction ensures that the concurrent execution of

transaction results in a system state that is equivalent to a state that could have been obtained had

these transactions executed one at a time in some order.

 Ensuring the isolation property is the responsibility of a component of the database

system called the concurrency-control component.

Transaction state:

 A transaction must be one of the following states.

 Active the initial state; the transaction stays in this state while it is executing.

 Partially committed after the initial state has been executed.

 Failed after the discovery, that normal execution can no longer proceed.

 Aborted after the transaction has been rolled back and the database has been restored

to its state prior to the start of the transaction.

 Committed after successful completion.

 Once the changes caused by an aborted transaction have been undone, it means the

transaction has been rolled back. A transaction that completes its execution successfully is said

to be committed. A transaction is said to have terminated if has either committed or aborted.

A transaction enters the failed state after the system determines that the transaction can

no longer proceed with its normal execution. Such a transaction much be roll backed. At this

point the system has two options:

 It can restart the transaction, but only if the transaction was aborted as a result of some

hardware or software error that was not created thro the internal logic of the transaction.

A restarted transaction is considered as a new transaction.

 It can kill the transaction. It usually does so because of some internal logic error that can

be corrected only by rewriting the application program, or because the input was bad, or

becoz the desired data were not found in the database.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

84

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Concurrent Executions:

 Transaction processing system usually allows multiple transactions to run

concurrently which causes inconsistency of data. To overcome this problem the

transactions where allowed to execute serially. However the two good reasons for

allowing concurrency is

 Improved throughput and resource utilization:

 The number of transactions executed in a given amount of time is known

as throughput. A transaction consists of many steps. Some involve I/O activity and some

involve CPU activity. The CPU and I/O activity can operate in parallel. Therefore I/O

activity can be done in parallel with processing at the CPU. This leads to multiple

transactions to be executed in parallel. Hence the throughput increases. The processor and

disk utilization also increase.

 Reduced waiting time:

 The transactions running on a system can be short as well as long. If

transactions run serially, a short transaction can wait for a long transaction to complete

that leads to delay in running a transaction. A concurrent execution reduces delay in

running transactions. It also reduces the average response time. (i.e) the average time for

a transaction to be completed after it has been submitted.

 Let T1 and T2 be two transactions that transfer funds from one account to

another. Ti transfers $50 from account A to account B.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

85

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

T2 transfers 10 percent of the balance from account A to account B.

Let the current values of accounts A and B be $1000 and $2000. if suppose the

transactions are executed serially .

 T1

 T2

If T1 is executed first and then T2 is executed, then the final values of accounts A and B

after the execution is $855 and $ 2145. The sum A+B is preserved after the execution of

both transactions.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

86

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Similarly if the transactions are executed one at a time in the order T2 followed

by T1, then the account values of A and B will be $850 and $ 2150.

 T2

 T1

The execution sequences are called schedules. They represent the chronological order in

which instructions are executed in the system. A schedule for a set of transactions must

consist of all instructions of those transactions, and must preserve the order in which the

instructions appear in those transactions.

 Suppose that the two transactions are executed concurrently in the following way,

 T1 T2

CS 2255 – DATABASE MANAGEMENT SYSTEMS

87

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

In the above transaction, after the execution takes place, the state will be same as the

serial transaction T1 followed by T2. and also A+B is preserved.

 T1 T2

The above transaction is also executed concurrently. But the final values of accounts A

and B are $950 and $2100. Hence the final state is inconsistent and A+B is not preserved.

“Not all concurrent executions result in correct state.”

System Recovery:

o Modifying the database without ensuring that the transaction will commit

may leave the database in an inconsistent state.

o Consider transaction T i that transfers $50 from account A to account B ;

goal is either to perform all database modifications made by T i or none at

all.

o Several output operations may be required for T i (to output A and B). A

failure may occur after one of these modifications have been made but

before all of them are made.

o To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying the

database itself.

o We study two approaches:

 log-based recovery , and

 shadow-paging

o We assume (initially) that transactions run serially, that is, one after the

other.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

88

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Complete Media Recovery

 Media recovery commands

There are three basic media recovery commands, which differ only in the way the

set of files being recovered is determined. They all use the same criteria for determining

if files can be recovered. Media recovery signals an error if it cannot get the lock for a

file it is attempting to recover. This prevents two recovery sessions from recovering the

same file. It also prevents media recovery of a file that is in use. You should be familiar

with all media recovery commands before performing media recovery.

RECOVER DATABASE

RECOVER DATABASE performs media recovery on all online datafiles that

require redo to be applied. If all instances were cleanly shutdown, and no backups were

restored, RECOVER DATABASE indicates a no recovery required error. It also fails if

any instances have the database open (since they have the datafile locks). To perform

media recovery on an entire database (all tablespaces), the database must be mounted

EXCLUSIVE and closed.

RECOVER TABLESPACE

RECOVER TABLESPACE performs media recovery on all datafiles in the

tablespaces listed. To translate the tablespace names into datafile names, the database

must be mounted and open. The tablespaces must be offline to perform the recovery. An

error is indicated if none of the files require recovery.

RECOVER DATAFILE

RECOVER DATAFILE lists the datafiles to be recovered. The database can be

open or closed, provided the media recovery locks can be acquired. If the database is

open in any instance, then datafile recovery can only recover off-line files.

MEDIA RECOVERY TYPES

Complete Media Recovery can be classified into three categories:

Performing Closed Database Recovery

If the database is open, shut it down using the Server Manager Shutdown Abort

mode of the Shutdown Database dialog box, or the SHUTDOWN command with the

ABORT option.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

89

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

If files are permanently damaged, restore the most recent backup files (taken as part of a

full or partial backup) of only the datafiles damaged by the media failure. Do not restore

any undamaged datafiles or any online redo log files. If the hardware problem has been

repaired, and damaged datafiles can be restored to their original locations, do so, and skip

Step 6 of this procedure. If the hardware problem persists, restore the datafiles to an

alternative storage device of the database server and continue with this procedure.

Start Server Manager and connect to Oracle with administrator privileges.

Start a new instance and mount, but do not open, the database using either the Server

Manager Startup Database dialog box (with the Startup Mount radio button selected), or

the STARTUP command with the MOUNT option.

If one or more damaged datafiles were restored to alternative locations in Step 3, the new

location of these files must be indicated to the control file of the associated database.

All datafiles you want to recover must be online during complete media recovery. To get

the datafile names, check the list of datafiles that normally accompanies the current

control file, or query the V$DATAFILE view. Then, issue the ALTER DATABASE

command with the DATAFILE ONLINE option to ensure that all datafiles of the

database are online.

To start closed database recovery of all damaged datafiles in one step, use either the

Server Manager Apply Recovery Archive dialog box, or an equivalent RECOVER

DATABASE statement.

To start closed database recovery of an individual damaged datafile, use the RECOVER

DATAFILE statement in Server Manager.

Now Oracle begins the roll forward phase of media recovery by applying the necessary

redo log files (archived and online) to reconstruct the restored datafiles. Unless the

application of files is automated, Oracle prompts you for each required redo log file.

Oracle continues until all required archived redo log files have been applied to the

restored datafiles. The online redo log files are then automatically applied to the restored

datafiles and notifies you when media recovery is complete. If no archived redo log files

CS 2255 – DATABASE MANAGEMENT SYSTEMS

90

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

are required for complete media recovery, Oracle does not prompt for any. Instead, all

necessary online redo log files are applied, and media recovery is complete.

After performing closed database recovery, the database is recovered up to the

moment that media failure occurred. You can then open the database using the SQL

command ALTER DATABASE with the OPEN option.

Performing Open-Database, Offline-Tablespace Recovery

At this point, an open database has experienced a media failure, and the database

remains open while the undamaged datafiles remain online and available for use. The

damaged datafiles are automatically taken off-line by Oracle.

The starting point for this recovery operation can vary, depending on whether you

left the database open after the media failure occurred.

If the database was shut down, start a new instance, and mount and open the

database. Perform this operation using the Server Manager Startup Database dialog box

(with the Startup Open radio button selected), or with the STARTUP command with the

OPEN option. After the database is open, take all tablespaces that contain damaged

datafiles offline.

If the database is still open and only damaged datafiles of the database are offline,

take all tablespaces containing damaged datafiles offline. Oracle identifies damaged

datafiles via error messages. Tablespaces can be taken offline using either the Take

Offline menu item of Server Manager, or the SQL command ALTER TABLESPACE

with the OFFLINE option. If possible, take the damaged tablespaces offline with

temporary priority (to minimize the amount of recovery).

Correct the hardware problem that caused the media failure. If the hardware

problem cannot be repaired quickly, you can proceed with database recovery by restoring

damaged files to an alternative storage device.

If files are permanently damaged, restore the most recent backup files (taken as

part of a full or partial backup) of only the datafiles damaged by the media failure. Do not

restore undamaged datafiles, online redo log files, or control files. If the hardware

problem has been repaired and the datafiles can be restored to their original locations, do

so. If the hardware problem persists, restore the datafiles to an alternative storage device

of the database server.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

91

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

If one or more damaged datafiles were restored to alternative locations (Step 3),

indicate the new locations of these files to the control file of the associated database.

After connecting with administrator privileges, use the RECOVER

TABLESPACE statement in Server Manager to start offline tablespace recovery of all

damaged datafiles in one or more offline tablespaces using one step.

Oracle begins the roll forward phase of media recovery by applying the necessary

redo log files (archived and online) to reconstruct the restored datafiles. Unless the

applying of files is automated, Oracle prompts for each required redo log file.

Oracle continues until all required archived redo log files have been applied to the

restored datafiles. The online redo log files are then automatically applied to the restored

datafiles to complete media recovery. If no archived redo log files are required for

complete media recovery, Oracle does not prompt for any. Instead, all necessary online

redo log files are applied, and media recovery is complete.

The damaged tablespaces of the open database are now recovered up to the

moment that media failure occurred. You can bring the offline tablespaces online using

the Place Online menu item of Server Manager, or the SQL command ALTER

TABLESPACE with the ONLINE option.

Performing Open-Database, Offline-Tablespace Individual Recovery

Identical to the preceding operation, here an open database has experienced a

media failure, and remains open while the undamaged datafiles remain online and

available for use. The damaged datafiles are automatically taken offline by Oracle. The

starting point for this recovery operation can vary, depending on whether you left the

database open after the media failure occurred.

If the database was shut down, start a new instance, and mount and open the

database. Perform this operation using the Server Manager Startup Database dialog box

(with the Startup Open radio button selected), or with the STARTUP command with the

OPEN option. After the database is open, take all tablespaces that contain damaged

datafiles offline.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

92

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

If the database is still open and only damaged datafiles of the database are offline,

take all tablespaces containing damaged datafiles offline. Oracle identifies damaged

datafiles via error messages. Tablespaces can be taken offline using either the Take

Offline menu item of Server Manager, or the SQL command ALTER TABLESPACE

with the OFFLINE option. If possible, take the damaged tablespaces offline with

temporary priority (to minimize the amount of recovery).

Correct the hardware problem that caused the media failure. If the hardware

problem cannot be repaired quickly, you can proceed with database recovery by restoring

damaged files to an alternative storage device.

If files are permanently damaged, restore the most recent backup files (taken as

part of a full or partial backup) of only the datafiles damaged by the media failure. Do not

restore undamaged datafiles, online redo log files, or control files. If the hardware

problem has been repaired and the datafiles can be restored to their original locations, do

so. If the hardware problem persists, restore the datafiles to an alternative storage device

of the database server.

If one or more damaged datafiles were restored to alternative locations (Step 3),

indicate the new locations of these files to the control file of the associated database.

After connecting with administrator privileges, use the RECOVER DATAFILE

statement in Server Manager to start offline tablespace recovery of all damaged datafiles

in one or more offline tablespaces using one step.

Oracle begins the roll forward phase of media recovery by applying the necessary

redo log files (archived and online) to reconstruct the restored datafiles. Unless the

applying of files is automated, Oracle prompts for each required redo log file.

Oracle continues until all required archived redo log files have been applied to the

restored datafiles. The online redo log files are then automatically applied to the restored

datafiles to complete media recovery. If no archived redo log files are required for

complete media recovery, Oracle does not prompt for any. Instead, all necessary online

redo log files are applied, and media recovery is complete.

The damaged tablespaces of the open database are now recovered up to the

moment that media failure occurred. You can bring the offline tablespaces online using

CS 2255 – DATABASE MANAGEMENT SYSTEMS

93

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

the Place Online menu item of Server Manager, or the SQL command ALTER

TABLESPACE with the ONLINE option.

Two phase commit

Consider a transaction T initiated at site Si , where the transaction coordinator is Ci.

Two phase commit protocol

When T completes its execution that is, when all the sites at which T has executed inform

Ci that T has completed Ci starts the two phase commit protocol.

 Phase 1:

 Ci adds the record <prepare T> to the log, and forces the log onto

stable storage.

 It then sends a prepare T message to all sites at which T executed.

 On receiving such a message, the transaction manager at the site

determines whether it is willing to commit its portion of T.

 If the answer is no, it addsa record <no T> to the log, and then

responds by sending an abort T message to Ci.

 If the answer is yes, it adds a record <ready T> to the log, and

forces the log (with all the log records corresponding to T) onto

stable storage.

 The transaction manager then replies with a ready T message to Ci.

 Phase 2:

 When Ci receives responses to the prepare T message from all the

sites, or when a prespecified interval of time has elapsed since the

prepare T message was sent out, Ci can determine whether the

transaction T can be committed or aborted.

 Transaction T can be committed if Ci received a ready T message

from all the participating sites.

 Otherwise, transaction T must be aborted.

 Depending, on the verdict, either a record <commit T> or a record

<abort T> is added to the log and the log is forced onto stable

storage.

 The coordinator sends either a commit T or an abort T message to

all participating sites.

 When a site receives that message, it records the message in the

log.

 A site at which T executed can unconditionally abort T at any time before it

sends the message ready T to the coordinator.

Once the message is sent, the transaction is said to be in the ready state at the site.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

94

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Commit point of a Transaction

A transaction T reaches its commit point when all its operations that access the database

have been executed successfullly and the effect all the transaction operations on the

database have been recorded in the log.

ARIES Recovery Algorithm

ARIES

o ARIES is a state of the art recovery method

 Incorporates numerous optimizations to reduce overheads during

normal processing and to speed up recovery

 The “advanced recovery algorithm” we studied earlier is modeled

after ARIES, but greatly simplified by removing optimizations

o Unlike the advanced recovery algorithm, ARIES

 Uses log sequence number (LSN) to identify log records

 Stores LSNs in pages to identify what updates have already

been applied to a database page

 Physiological redo

 Dirty page table to avoid unnecessary redos during recovery

 Fuzzy checkpointing that only records information about dirty

pages, and does not require dirty pages to be written out at

checkpoint time

 More coming up on each of the above …

ARIES Optimizations

o Physiological redo

 Affected page is physically identified, action within page can be

logical

 Used to reduce logging overheads

 e.g. when a record is deleted and all other records

have to be moved to fill hole

 Physiological redo can log just the record

deletion

 Physical redo would require logging of old

and new values for much of the page

 Requires page to be output to disk atomically

 Easy to achieve with hardware RAID, also

supported by some disk systems

 Incomplete page output can be detected by

checksum techniques,

 But extra actions are required for recovery

 Treated as a media failure

CS 2255 – DATABASE MANAGEMENT SYSTEMS

95

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

ARIES Data Structures

o Log sequence number (LSN) identifies each log record

 Must be sequentially increasing

 Typically an offset from beginning of log file to allow fast access

 Easily extended to handle multiple log files

o Each page contains a PageLSN which is the LSN of the last log record

whose effects are reflected on the page

 To update a page:

 X-latch the pag, and write the log record

 Update the page

 Record the LSN of the log record in PageLSN

 Unlock page

 Page flush to disk S-latches page

 Thus page state on disk is operation consistent

 Required to support physiological redo

 PageLSN is used during recovery to prevent repeated redo

 Thus ensuring idempotence

o Each log record contains LSN of previous log record of the same

transaction

 LSN in log record may be implicit

o Special redo-only log record called compensation log record (CLR) used

to log actions taken during recovery that never need to be undone

 Also serve the role of operation-abort log records used in advanced

recovery algorithm

 Have a field UndoNextLSN to note next (earlier) record to be

undone

 Records in between would have already been undone

 Required to avoid repeated undo of already undone actions

LSN TransId PrevLSN RedoInfo UndoInfo LSN TransID UndoNextLSN

RedoInfo

o DirtyPageTable

 List of pages in the buffer that have been updated

 Contains, for each such page

 PageLSN of the page

 RecLSN is an LSN such that log records before this LSN

have already been applied to the page version on disk

 Set to current end of log when a page is inserted

into dirty page table (just before being updated)

 Recorded in checkpoints, helps to minimize redo

work

o Checkpoint log record

 Contains:

 DirtyPageTable and list of active transactions

CS 2255 – DATABASE MANAGEMENT SYSTEMS

96

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 For each active transaction, LastLSN, the LSN of the last

log record written by the transaction

 Fixed position on disk notes LSN of last completed checkpoint log

record

ARIES Recovery Algorithm

o ARIES recovery involves three passes

o Analysis pass : Determines

 Which transactions to undo

 Which pages were dirty (disk version not up to date) at time of

crash

 RedoLSN : LSN from which redo should start

o Redo pass :

 Repeats history, redoing all actions from RedoLSN

 RecLSN and PageLSNs are used to avoid redoing actions

already reflected on page

o Undo pass :

 Rolls back all incomplete transactions

 Transactions whose abort was complete earlier are not

undone

 Key idea: no need to undo these transactions: earlier

undo actions were logged, and are redone as

required

ARIES Recovery: Analysis

o Analysis pass

o Starts from last complete checkpoint log record

 Reads in DirtyPageTable from log record

 Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

 In case no pages are dirty, RedoLSN = checkpoint record’s

LSN

 Sets undo-list = list of transactions in checkpoint log record

 Reads LSN of last log record for each transaction in undo-list from

checkpoint log record

o Scans forward from checkpoint

 .. On next page …

o Scans forward from checkpoint

 If any log record found for transaction not in undo-list, adds

transaction to undo-list

 Whenever an update log record is found

 If page is not in DirtyPageTable, it is added with RecLSN

set to LSN of the update log record

 If transaction end log record found, delete transaction from undo-

list

 Keeps track of last log record for each transaction in undo-list

CS 2255 – DATABASE MANAGEMENT SYSTEMS

97

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 May be needed for later undo

o At end of analysis pass:

 RedoLSN determines where to start redo pass

 RecLSN for each page in DirtyPageTable used to minimize redo

work

 All transactions in undo-list need to be rolled back

ARIES Redo Pass

o Redo Pass: Repeats history by replaying every action not already reflected

in the page on disk, as follows:

o Scans forward from RedoLSN. Whenever an update log record is found:

 If the page is not in DirtyPageTable or the LSN of the log record is

less than the RecLSN of the page in DirtyPageTable, then skip the

log record

 Otherwise fetch the page from disk. If the PageLSN of the page

fetched from disk is less than the LSN of the log record, redo the

log record

 NOTE: if either test is negative the effects of the log record have

already appeared on the page. First test avoids even fetching the

page from disk!

ARIES Undo Actions

o When an undo is performed for an update log record

 Generate a CLR containing the undo action performed (actions

performed during undo are logged physicaly or physiologically).

 CLR for record n noted as n ’ in figure below

 Set UndoNextLSN of the CLR to the PrevLSN value of the update

log record

 Arrows indicate UndoNextLSN value

o ARIES supports partial rollback

 Used e.g. to handle deadlocks by rolling back just enough to

release reqd. locks

 Figure indicates forward actions after partial rollbacks

 records 3 and 4 initially, later 5 and 6, then full rollback

ARIES: Undo Pass

o Undo pass

o Performs backward scan on log undoing all transaction in undo-list

 Backward scan optimized by skipping unneeded log records as

follows:

 Next LSN to be undone for each transaction set to LSN of

last log record for transaction found by analysis pass.

 At each step pick largest of these LSNs to undo, skip back to

it and undo it

CS 2255 – DATABASE MANAGEMENT SYSTEMS

98

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 After undoing a log record

 For ordinary log records, set next LSN to be undone

for transaction to PrevLSN noted in the log record

 For compensation log records (CLRs) set next LSN

to be undo to UndoNextLSN noted in the log record

 All intervening records are skipped since

they would have been undo already

o Undos performed as described earlier

Other ARIES Features

o Recovery Independence

 Pages can be recovered independently of others

 E.g. if some disk pages fail they can be recovered from a

backup while other pages are being used

o Savepoints:

 Transactions can record savepoints and roll back to a savepoint

 Useful for complex transactions

 Also used to rollback just enough to release locks on

deadlock

o Fine-grained locking:

 Index concurrency algorithms that permit tuple level locking on

indices can be used

 These require logical undo, rather than physical undo, as in

advanced recovery algorithm

o Recovery optimizations: For example:

 Dirty page table can be used to prefetch pages during redo

 Out of order redo is possible:

 redo can be postponed on a page being fetched from disk,

and performed when page is fetched.

 Meanwhile other log records can continue to be processed

SQL SERVER DATABASE RECOVERY

 SQL server database recovery is essential when system failure has

occurred. If you take a look at businesses that experience data loss in a disaster,

a whopping ninety percent go out of business within two years.

 Data loss emergencies can be attributed to physical or logical problems.

An outstanding seventy percent of breakdowns are due to physical failures that

most often require the attention of a professional data recovery expert.

SQL Server Database

 The SQL server database is a management system used to store data

http://www.sql-recovery.com/data-loss-emergencies.html
http://www.sql-recovery.com/physical-problems.html
http://www.sql-recovery.com/logical-problems.html
http://www.sql-recovery.com/physical-problems.html

CS 2255 – DATABASE MANAGEMENT SYSTEMS

99

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

on networked file servers. Companies depend on these databases to remain

accessible in order for business to run smoothly.

 Media in database servers can suffer from the same failure points as

drives in PCs and workstations.

Symptoms

 Unable to boot

 Unable to access drives and partitions

 Unable to run or load data

 Corrupted data

 Virus attacks

 Hard drive failure or crashes

 Fire and water damage

 Media contamination or damage

 Accidental reformatting of partitions

 Accidental deletion of data

Backing Up

 System failures occur even with the best configured systems. Therefore

frequent backups are crucial to prevent data loss and can speed up the recovery

process. SQL recovery can be successfully restored when supported by a well

tested back up program. The different database recovery models make backing

up more efficient when breakdowns occur.

System Maintenance Programs

 When systems break down and backup devices become corrupt, access

to the database is prevented. Downtime can set any company back therefore it is

imperative that a professional data recovery specialist be consulted as soon as

possible.

 Usage of regular system maintenance programs in most cases will not

be able to recover all of the data and can often create bigger problems.

SQL Server Database Recovery

 SQL server database recovery is usually handled in the same fashion

as a server / RAID recovery. A database can be successfully rebuilt by analyzing

the contents of the drive images, tables and records containing data.

http://www.sql-recovery.com/database-recovery-models.html
http://www.sql-recovery.com/database-recovery-models.html
http://www.sql-recovery.com/backup-tips.html
http://www.sql-recovery.com/backup-tips.html
http://www.raidrecoveryguide.com/

CS 2255 – DATABASE MANAGEMENT SYSTEMS

100

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Concurrency

Need for concurrency control

 Transaction processing system allows multiple transactions to run concurrently.

Concurrent execution of multiple transactions causes several complications with

consistency of the data. However, there are two good reasons for allowing concurrency:

(a) Improved throughput and resource utilization

Throughput is the number of transactions executed in a given amount of time.

A transaction consists of many steps. Some involve I.O activity; others

involve CPU activity. The CPU and the disks in a computer system can operate

in parallel. The parallelism of the CPU and the I/O system can therefore be

exploited to run multiple transactions in parallel. If one transaction is reading or

writing data on disk, another can be running in the CPU.

All of this increases throughput of the system correspondingly, the processor

and disk utilization also increases. Thus the processor and disk spend less time

idle, or not performing any useful work.

(b) Reduced waiting time

There may be a mix of transactions running on a system, some short and

some long. If transactions run serially, a short transaction may have to wait for a

proceding long transaction to complete, which can lead a unpredictable delays in

running a transaction. If the transactions are operating on different parts of the

database, it is better to run them concurrently sharing the CPU cycles and disk

accesses among them.

Concurrent execution reduces the unpredictable delays in running

transactions. It also reduces the average response time.

Example: Let T1 and T2 are two transactions. Transaction T1 transfers Rs. 2000 from

account A to account B. It is defined as

 T1: read(A);

 A:= A-2000;

 Write (A);

 Read(B);

 B:=B + 2000;

 Write (B);

Transaction T2 transfers 10 percent of the balance from account A to account B. It is

defined as

 T2: read (A);

 Temp: =A & 0.1;

 A:=A – temp;

CS 2255 – DATABASE MANAGEMENT SYSTEMS

101

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Write (A);

 read(B);

 B:= B + temp;

 Write (B);

Suppose the current values of account A and B are Rs. 10,000 and Rs. 5,000

respectively. Suppose the two transactions are executed in the order T1 followed by T2.

T1 T2

Read (A);

A:= A –

2000;

Write (A);

Read (B);

B = B +

2000;

Write (B);

Read (A);

Temp:= A *

0.1;

A:= A – temp;

Write (A);

Read(B);

B:=B + temp;

Write(B);

The final values of account A and B are Rs. 7,2000 and Rs. 7,800 respectively.

Thus the sum A + B is preserved.

If the transactions are executed in the order T2 followed by T1 the corresponding

execution sequence is shown.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

102

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

T1 T2

Read (A);

A:= A –

2000;

Write (A);

Read (B);

B = B +

2000;

Write (B);

Read (A);

Temp:= A *

0.1;

A:= A – temp;

Write (A);

Read(B);

B:=B + temp;

Write(B);

After the execution of schedule 2, the sum A + B is preserved, and the final values

of account A and B are Rs. 7,000 and Rs. 8,000 respectively.

The execution sequences which represents the chronological order in which

instructions are executed in the systems, are called schedules.

Schedule 1 and schedule 2 are serial schedules several execution sequences are

possible, since the various instructions from both the transactions may be interleaved.

Given two transactions can also be executed concurrently. One possible is shown.

T1 T2

Read (A);

A:= A –

2000;

Write (A);

Read (B);

B = B +

2000;

Write (B);

Read (A);

Temp:= A *

0.1;

A:= A – temp;

Write (A);

Read(B);

B:=B + temp;

Write(B);

CS 2255 – DATABASE MANAGEMENT SYSTEMS

103

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

After execution of this schedule, we arrive at the same state as the one in which

the transactions are executed serially in the order T1 followed by T2. The sum A + B is

preserved.

Not all current executions result in a correct state. Consider a schedule shown.

After the execution of this schedule, we arrive at a state where the final values of

accounts A and B are Rs. 8,000 and Rs. 6,000, respectively. This final state is an

inconsistent state.

T1 T2

Read (A);

A:= A –

2000;

Read (A);

Temp:= A *

0.1;

A:= A – temp;

Write (A);

Read(B)

T1 T2

Write(A)

Read(B)

B:= B + 2000

Write(B)

B : = B + temp

Write(B)

Schedule 4 – a concurrent schedule

We can ensure consistency of the database under concurrent execution by making

such that any schedule that executed has the same effect of serial schedule.

Concurrency control:

 The system must control the interaction among the concurrent transactions.

This control is achieved through one of concurrency control schemes. The

concurrency control schemes are based on the serializability property. Now

we will consider the management of concurrently executing transactions.

 Different types of protocols/schemes used to control concurrent execution of

transactions are:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

104

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Lock Based Protocols:

 To ensure serializability it is required that data items should be accessed in

mutual exclusive manner; if one transaction is accessing a data item, no other

transaction can modify that data item. To implement this requirement locks

are used. A transaction is allowed to access a data item only if it is currently

holding a lock on that item.

Lock:

 There are two models in which a data item may be locked:

 Shared mode lock:

 If a transaction Ti has obtained a shared mode lock on item Q, then Ti

can read, but cannot write Q. It is denoted by S.

 Exclusive :

 If a transaction Ti has obtained as exclusive mode lock on item Q, then

Ti can read and also write Q. It is denoted by X.

 A transaction requests a shared lock on data item Q by executing the lock-S(Q)

instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)

instruction. Similarly, a transaction can unlock a data item Q by the unlock (Q)

instruction.

 Given a set of lock modes, we can define a compatibility function on them as

follows: Let A and B represent arbitrary lock modes. Suppose that a transaction Ti

request a lock of mode A on item Q on which transaction Tj (Ti≠Tj) currently hold a lock

of mode B. If transaction Tj can be granted a lock of Q immediately, in spite of the

presence of the mode B lock, then we say mode A is compatible with mode B. Such a

function is represented by a matrix.

 S X

S True False

X False false

Lock compatibility matrix ‘comp’

 To access a data item, transaction Ti must first lock that item. If the data item

is already locked by another transaction in an incompatible mode, the

concurrency control manager will not grant the lock until all incompatible

locks held by other transactions have been released. Thus, Ti is made to wait

until all incompatible locks held by other transactions have been released.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

105

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Example: Let A and B be two accounts that are accessed by transaction T1 and

T2. Transaction T1 transfer $50 from account B to account A. It is shown in

figure. Transaction T2 displays that total amount of money in accounts A and B.

 T1: Lock-x (B);

 Read (B);

 B: =B-50;

 Write (B);

 Unlock (B);

 Lock-X (A);

 Read (A);

 A: =A + 50;

 Write (A);

 Unlock (A);

Transaction T1

 T2: lock-S(A);

 Read (A);

 Unlock (A);

 Lock-S (B);

 Read (B);

 Unlock (B);

 Display (A +B);

Transaction T2

 T3 T4

Lock-x(B);

Read(B);

 B :=B-50;

 Write(B);

 lock-S(A);

 lock-S(A);

Read(A);

 Lock-S(B);

Here T3 is holding an exclusive-mode lock on B and T4 is requesting a shared-mode lock

on B, T4 is waiting for T3 to unlock B. Similarly, since T4 is holding a shared-mode lock

on A and T3 is requesting an exclusive-mode lock on A, T3 is requesting an exclusive

mode lock on A, T3 is waiting for T4 to unlock A. Thus, in requesting an exclusive

mode lock on A, T3 is waiting for t4 to unlock A. Thus, in this situation neither of

transactions can proceed with normal execution. This situation is called dead lock. When

deadlock occurs, the system must rollback one of the two transactions. Once a transaction

has been rolled back, the data items that were locked by that transaction are unlocked.

These data items are then available to the other transaction, which can continue with its

execution.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

106

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Locking Protocols :

Each transaction in the system should follow a set of rules, called a locking

protocol, indicating when a transaction may lock and unlock each of the data

items.

 Granting of locks:

 When a transaction requests a lock on a data item in a particular mode an

no other transaction has a lock on the same data item in a conflicting mode, the

lock can be granted. However, care must be taken while granting the locks. For

example, consider a transaction T2 has a shared-mode lock on data item Q, and

another transaction T1 requests a exclusive-mode lock on the same data item. In

this case, T1 has to wait for T2 to release the lock. Mean while, another

transaction T3 requests shared mode lock on Q. The lock request is compatible

with the lock granted to T2, so t3 may be granted the shared-mode lock. At this

point, even though T2 releases the lock, T1 has to wait for T3 to release the lock.

Thus, it is possible that sequence of transactions requests shared-mode lock on Q,

and each transaction releases the lock a short while after it is granted, but T1 may

never gets the exclusive mode lock on the data item. The transaction T1 may

never make progress 1 and is said to be starved.

 Starvation of transaction can be avoided by granting locks in the following

manner. When a transaction Ti requests a lock on a data item Q in a particular

mode M, the concurrency control manager grants the lock provided that

1. There is no other transaction holding a lock on Q in a mode that

conflicts with M.

2. There is no other transaction that is waiting for a lock on Q, and that

made its lock request before Ti.

Two Phase Locking Protocol:

 This protocol requires that each transaction issue lock and unlock requests in two

phases.

i. Growing phase: In this phase, a transaction may obtain locks, but may not release

any lock.

ii. Shrinking phase: in this phase, a transaction may release locks, but may not

obtain any new lock.

Initially, a transaction is in the growing phase. The transaction acquires locks as

needed. Once the transaction releases a lock, it enters in the shrinking phase, and

it cannot issue more lock requests.

Transaction T1 and T2 are not two phase while transaction T3 is two phase.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

107

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 T3 : Lock-x (B);

 Read (B);

 B: =B-50;

 Write (B);

 Unlock (B);

 Lock-X (A);

 Read (A);

 A: =A + 50;

 Write (A);

 Unlock (A);

Transaction T3

Advantage:

 The two-phase locking protocol ensures conflict serializability. Consider any

transaction, the point in the schedule where the transaction has obtained it

final lock is called the lock point of the transaction. Now, transaction can be

ordered according to their lock points. This ordering is a serializability

ordering for the transactions.

Disadvantages:

 Cascading rollbacks may occur under two-phase locking.

T5 T6 T7

Lock-X (A);

Read (A);

Lock-S(B);

Read(B);

Write (A);

Unlock (A);

Lock-X (A);

Read (A);

Write (A);

Unlock (A);

Lock-S(A)

Read(A)

 Partial schedule under two-phase locking.

 Transactions T5,T6 and T7 are two phase, but failure of T5 after the read(A)

instruction of T7 leads to cascading rollback of T6 and T7. Cascading

rollbacks can be avoided by a modification of two-phase locking.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

108

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

i. Strict two-phase locking protocol:

 This protocol requires that locking should be two phase, and all exclusive-

mode locks taken by a transaction should be held until the transaction. This

requirement prevents any transaction from reading the data written by any

uncommitted transaction under exclusive mode until the transaction commits.

ii. The rigorous two phase locking protocol.

 This protocol requires that all locks be held until the transaction commits.

Timestamp Based Protocols

 Time stamp based protocol ensures serializability. It selects an ordering

among transactions in advance using time stamps.

I. Timestamps:

 With each transaction in the system, a unique fixed timestamp is associated. It is

denoted by TS(Ti). This timestamp is assigned by the database system before

the transaction Ti starts execution. If a transaction Ti has been assigned

timestamp TS(Ti), and new transaction Tj enters the system, then

TS(Ti)<TS(Tj).

 Two methods are used for implementing timestamp:

i) Use the value of the system clock as the timestamp, that is, a transactions

timestamp is equal to the value of the clock when the transaction

enters the system.

ii) Use a logical counter, that is a transactions timestamp is equal to the value

of logical counter, when transaction enters the system. After assigning

a new timestamp, value of timestamp is increased.

 The timestamps of the transactions determine the serializability order. Thus,

if TS(Ti)>TS(Tj), then the system must ensure that in produced schedule

transaction Ti appears before transaction Tj.

To implement this scheme, two timestamps are associated with each data item Q.

i) W-timestamp(Q)denotes the largest timestamp of any transaction that

executed write (Q) successfully.

ii) R-timestamp(Q) denotes the largest timestamp of any transaction that

executed read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is

executed.

The Timestamp Ordering Protocol:

 The timestamp ordering protocol ensures that any conflicting read and

write operations executed in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q).

CS 2255 – DATABASE MANAGEMENT SYSTEMS

109

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

a) If TS(Ti) < W-timestamp(Q), then Ti needs a value of Q that was already

overwritten. Hence, read operation is rejected, and Ti is rolled back.

b) If TS(Ti) ≥W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

a) If TS(Ti)< R-timestamp(Q), then the value of Q that Ti is producing was

needed previously,and the system assumed that the value would never be

produced. Hence, the system rejects write operation and rolls Ti back.

b) If TS(Ti) ≥W-timestamp(Q), then the Ti is attempting to write an obsolete

value of Q. hence, the system rejects write operation and rolls Ti back.

c) Otherwise, the system executes the write operation and sets W-timestamp(Q)

to TS(Ti).

If a transaction Ti is rolled by the concurrency control scheme, the system assigns

it a new timestamp and restarts it.

Example: Consider two transaction T14 and T15. Transaction T14 displays the

sum of account A and B transaction T15 transfer $50 from account B to account

A and displays the sum of both.

T14 : Read (A);

 Read(B);

 Display(A+B);

T15 : Read (B);

 B: =B-50;

 Write (B);

Read (A);

 A: =A + 50;

 Write (A);

 Display(A+B);

A concurrent schedule for these two transactions:

T14 T15

Read (B);

 Read(A);

 Display(A+B);

 Read (B);

 B: =B-50;

 Write (B);

Read (A);

 A: =A + 50;

 Write (A);

 Display(A+B);

Schedule 3

CS 2255 – DATABASE MANAGEMENT SYSTEMS

110

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

As shown in fig., in schedule 3, TS(T14)<TS(T15) and the schedule is possible

under timestamp protocol.

Advantages:

1. The timestamp ordering protocol ensures conflict serializability. This is

because conflicting operations are processed in timestamp order.

2. The protocol ensures freedom form deadlock, since no transaction ever

waits.

 Disadvantages:

1. There is a possibility of starvation of long transactions if a sequence of

conflicting short transactions causes repeated restarting of the long

transaction.

If a transaction is found to be getting restarted repeatedly, conflicting

transactions need to be temporarily blocked to enable the transaction to

finish.

2. The protocol can generate schedules that are not recoverable.

Thomas’ Write Rule:

 Thomas’ write rule is a modified version of timestamp ordering protocol.

Consider schedule 4 given in following Fig.

T16 T17

Read (Q)

 Write(Q)

Write(Q)

 Here, T16 starts before T17, therefore TS(T16)<TS(T17). The read(Q)

operation of T16 succeeds, similarly the write(Q) operation of T17. When T16

attempts its write (Q) operation, it is rejected by the system and T16 is

rolled back; as (TS(T16)<W-timestamp(Q)). Since W-

timestamo(Q)=TS(T17);

 In this case, T17 has already written Q an the value of Q that T16 is

attempting to write is one that will never need to be read. Thus, the rollback of

T16 is required by timestamp ordering protocol, but it is unnecessary.

 Thomas’ write rule, modifies the timestamp ordering protocol.

Thomas’ write rule is:

Suppose that transaction Ti issues write (Q):

CS 2255 – DATABASE MANAGEMENT SYSTEMS

111

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

a) If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was previously

needed, and it had been assumed that the value would never be produced. Hence, the

system rejects the write operation and rolls Ti back.

b) If TS(Ti) < W-timestamp(Q),then Ti is attempting to write an obsolete value of Q.

hence, this write operation can be ignored.

c) Otherwise, this system executes the write operation and sets w-tiimestamps(Q) to

TS(Ti).

The difference between timestamp ordering process and Thomas’ write rule lies in the

second rule. In the timestamp ordering protocol, if Ti issues write (Q) and TS(Ti) < W-

timestamp(Q),Ti is rolled back. However, in Thomas’ write rule if TS(Ti) < W-

timestamp(Q),and TS(Ti) ≥ R-timestamp(Q), the write (Q) operation

can be ignored.

Intent locks

Intent locks are used when SQL Server wants to acquire a shared lock or exclusive lock

on some of the resources lower down in the hierarchy.

Intent locks include:

 intent shared (IS)

 intent exclusive (IX)

 shared with intent exclusive (SIX)

 intent update (IU)

 update intent exclusive (UIX)

Intent shared (IS) locks are used to indicate the intention of a transaction to read some

resources lower in the hierarchy by placing Shared (S) locks on those individual

resources.

Intent exclusive (IX) locks are used to indicate the intention of a transaction to modify

some resources lower in the hierarchy by placing Exclusive (X) locks on those individual

resources.

Shared with intent exclusive (SIX) locks are used to indicate the intention of the

transaction to read all of the resources lower in the hierarchy and modify some resources

lower in the hierarchy by placing Intent exclusive (IX) locks on those individual

resources.

Intent update (IU) locks are used to indicate the intention to place Update (U) locks on

some subordinate resource in the lock hierarchy.

Update intent exclusive (UIX) locks are used to indicate an Update (U) lock hold on a

resource with the intent of acquiring Exclusive (X) locks on subordinate resources in the

CS 2255 – DATABASE MANAGEMENT SYSTEMS

112

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

lock hierarchy.

Shared intent update (SIU) locks are used to indicate shared access to a resource with the

intent of acquiring Update (U) locks on subordinate resources in the lock hierarchy.

Deadlock:

 “A system is in a deadlock state if there exists a set of transactions such that every

transaction in the set is waiting for another transaction in the set. In other words,

there exists a set of waiting transactions{T0,T1,……………,Tn} such that T0 is

waiting for a data item that T1 holds, and T1 is waiting for a data item that T2

holds, and …………, and Tn-1 is waiting for a data item that Tn holds, and Tn is

waiting for a data item that T0 holds. In such situation, none of transaction can

make progress.

There are two principal methods for dealing with the deadlock problem.

i) Deadlock preventation: this approach ensures that system will never

enter in deadlock state

ii) Deadlock detection and recovery: this approach tries to recover from

deadlock if system enters in deadlock state.

Deadlock Preventation:

There are two approaches for deadlock preventation:

1) One approach ensures that no cyclic waits can occur by ordering the requests for

locks, or requiring all locks to be acquired together. This approach requires that

each transaction locks all data items before it begins execution. It is required that,

either all data items should be locked in one step, or none should be locked.

Disadvantages of this approach are:

a) It is hard to predict before the transaction begins, what data items need to be

locked.

b) Data-item utilization may be very low, since many of the data items may be

locked but unused for a long time.

2) The second approach for deadlock preventation is to use preemption and

transaction rollbacks. In preemption when a transaction T2 requests a lock that

transaction T1 holds, the lock granted to T1 may be preempted by rolling back

T1, and granting of lock to T2. To control preemption, a unique timestamp is

assigned to each transaction. The system uses timestamp to decide whether a

transaction should wait or roll back.

Two different deadlock preventation schemes using timestamp are:

1) Wait die

CS 2255 – DATABASE MANAGEMENT SYSTEMS

113

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The wait-die scheme is non-preemption technique. In this, when transaction Ti

requests a data item held by Tj, Ti is allowed to wait only if it has a timestamp

smaller than Tj.(i.e. Ti is older than Tj). Otherwise, Ti is rolled back(dies).

 For example, consider three transactions T1,T2 and T3 with timestamps 5,10 and

15 respectively. If T1 requests a data item held by T2, then T1 will wait. If T3

requests data item held by T2, then T2 will be rolled back.

2) Wound wait

 The wound-wait is preemptive technique. In this, when transaction Ti request

data item held by Tj, Ti is allowed to wait,only if it has timestamp greater than

Tj (i.e. Ti is younger than Tj). Otherwise Tj is rolled back.

 Returning to same example, if T1 requests a data item held by T2, then the

data item will be preempted by T2, and T2 will be rolled back. If T3 requests

a data item held by T2 then T3 will wait.

Timeout Based Schemes

This approach for deadlock handling is based on lock timeouts. In this approach a

transaction that has requested a lock waits for at most a specified amount of time.

If the lock has not been granted within that time, the transaction is said to be time

out, and it rolls back itself and restarts. Thus, if there was a deadlock one or more

transactions involved in the deadlock will time out and roll back, allowing the

others to proceed.

Advantages

 This scheme is easy to implement.

 It works well if transactions are short, and if long, waits are likely to be

due to deadlocks.

 Disadvantages

 It is hard to decide how long a transaction should wait. Too long waits

results in unnecessary delays once a deadlock has occurred, and too short

waits result in transaction rollbacks even when there is no deadlock.

 Starvation is also possible with this scheme.

 Deadlock Detection and Recovery

 This approach uses an algorithm that examines the state of the system

periodically to determine whether a deadlock has occurred. If one has occurred, then the

system attempts to recover from the deadlock.

Deadlock Detection.

 Deadlock can be described in terms of directed graphs called a

wait-for graph. This graph consists of pair G=<V,E> ,where:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

114

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

V - Set of vertices consist of all transaction in the

system.

E - set of edges.

 If TiTj is in E, then there is a directed edge from transaction Ti to Tj. When

transaction Ti requests a data item currently held by transaction Tj, then the edge

TiTj is inserted in the wait for graph. A deadlock exists in the system if and

only if the wait for graph contains a cycle. Each transaction involved in the cycle

is said to be dead locked.

Example : consider the wait for graph shown if figure:

Fig (A) Wait for graph with no cycle

 The graph depicts following situation:

 Transaction T25 is waiting for transactions T26 and T27.

 Transaction T27 is waiting for transaction T26.

 Transaction T26 is waiting for transaction T28.

 This graph has no cycle, therefore the system is not in a deadlock

state.

Consider the graph shown in figure (B).

(B) Wait for graph with a cycle

Above the graph contains a cycle:

 T26T28T27T26

T26

T28

T25

T27

T2

5

T2

6
T28

T27

CS 2255 – DATABASE MANAGEMENT SYSTEMS

115

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Therefore, the system is in deadlock state.

Recovery from Deadlock:

 When a deadlock detection algorithm determines that a deadlock exists, the

system must recover from the deadlock. The most common solution is to roll back

one or more transaction.

Three actions need to be taken:

1) Selection of transactions : Given a set of deadlocked transactions, we must

determine which transactions should be rolled back to break the deadlock. The

method used for this is : rollback those transactions that will incur minimum cost.

Many factors determine the cost of transactions.

i) How long the transaction has computed and how much longer the

transaction will compute before it completes its task?

ii) How many data items the transaction has used?

iii) How many more data items the transaction needs to complete its task?

iv) How many transactions will be involved in the rollback?

2) Rollback: once we have decided to roll back particular transaction, we must

determine how far transaction should be rolled back. The solutions are:

i) Total rollback: Abort the transaction and then restart it.

ii) Partial rollback: It is more effective to roll back the transaction only as far

as necessary to break the deadlock.

3) Starvation: It is possible that, same transaction will be rolled back number of

times to break the deadlock. As the result, this transaction never completes its

transactions can be picked as a victim only a small number of times.

Serializability

 The database system must control concurrent executions of transactions, to ensure

that the database state remains consistent. Some schedules will ensure consistency and

some will not. Since transactions are programs it is difficult to determine exactly what

operations a transaction performs and how operations of various transactions interact.

Hence we consider only two operations, read and write.

 There are two types of Serializability. They are

(i) Conflict Serializability

(ii) View Serializability.

Conflict Serializability:

 Let us consider a schedule A in which there two consecutive instructions Ii

are and Ij of transactions Ti and Tj resp (i not equal to j). if Ii and Ij refer to different data

items, then Ii and Ij can be swaped without affecting the results of any instructions in the

CS 2255 – DATABASE MANAGEMENT SYSTEMS

116

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

schedule. However if Ii and ij refer to the same data item Q then the order of the two

steps may matter. There are four cases to consider:

Thus only in the case where Ii and Ij are Read instructions the execution matters.

Ii and Ij conflict if they are operations by different transactions on same data item, and

atleast one of these instructions is a write operation.

Here the Write (A) instruction of T1 conflicts with read (A) instruction of T2.

However the Write (A) instruction of T2 does not conflict with the Read (B) instruction

of T1, bcoz the two instructions access different data items. Since the Write (A)

instruction does not conflict with the Read (A) in schedule 3, the instructions can be

swapped to generate an equivalent schedule as below.

 T1 T2

CS 2255 – DATABASE MANAGEMENT SYSTEMS

117

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Schedule 3 and 5 produce a same final system.

Non conflicting instructions can be swapped as follows.

If a schedule S can be transformed into a schedule S’ by a series of swaps of non

conflicting instructions, then S and S’ are said to be conflict equivalent. The concept of

conflict equivalence leads to the concept of conflict Serializability. The schedule S is

conflict serializable, if it is conflict equivalent to a serial schedule. Thus schedule 1 and

schedule 3 are conflict serializable.

TI T2

Read(A)

Read(A)

Write(A)

Read(B)

Write(B)

Write(A)

Read(B)

Write(B)

 Schedule’s’ can be transformed into a schedule s by a series of

swaps of non conflicting instructions we say that s and s’ are

conflict equivalent.

 Concept of conflict equivalence leads to the concept of conflict

serializability.

 Schedule S is conflict serializable , if it’s conflict equivalent to

a serial schedule.

 Schedule 3 is conflict serializable, since it’s conflict equivalent

to the serial schedule1.

 It consists of 2 Transaction T3 and T4.

 This schedule is not conflict serializable, since it’s not equivalent

to either the serial schedule (T3,T4) (or) Serial schedule (T4,T3).

T3 T4

Read(Q)

Write(Q)

Write(Q)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

118

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

View Serializablity:

 Two schedules S and S’ , where the same set of transactions

participates in both schedules.

 The schedules S and S’ are said to be view equivalent if three

conditions are met

1. For each data item Q, if transaction Ti reads the initial values of Q in schedule

S, then transaction Ti must, in schedule S’ also read the intial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S and if

the value was produced by a write(Q) operation executed by Tj, then the

read(Q) operation of Ti must in schedule S’ and also read the values of Q that

was produced by the same write (Q) operation of transaction Tj.

3. For each data item Q, the transaction that performs the final write(Q)

operation in schedule S must perform the final write (Q) operation in schedule

S’.

 Concept of view equivalence to the concept of view serializablility.

 Schedule S is view serializable, if it’s view equivalent to a serial

schedule.

Schedule 8 – View serializable schedule:

T3 T4 T6

Read(Q)

Write(Q)

Write(Q)

Write(Q)

 It’s view equilvalent to the serial schedule <T3,T4,T5> since one read (Q)

instruction reads the initial value of Q in both schedules and T5 performs

the final write of Q in both schedules and T5 perform the final write of

Q in both schedules.

 Every conflict serializable schedule is also view serializable, but there are

view serializable schedules that are not conflict serializable.

 Schedule 8, transactions T4 and T6 performs write(Q) operations without

having performed a read(Q) operations. Write of this sort are called blind

writes.

 Blind writes appear in any view serializable schedule that is not conflict

serializable.

Testing of Serializablity:

 It’s done by using a directed graph, called procedure graph,

constructed form schedule.

 Graph consists of a pair G=(V,E) wehre ‘v’ is a set of vertices and ‘E’ is a

sert of edges.

 Set of vertices consists of all transactions in Schedule.

 Set of edges consists of all edges Ti -> Tj for 3 conditions holds:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

119

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

1. Ti executes write(Q) before Tj executes read(Q).

2. T i executes read(Q) before Tj executes write(Q).

3. Ti executes write (Q) before Tj executes write(Q).

 The precedence graph for schedule 1 contains a single edge T1->T2, since

all the instructions of T1 are executed before the first instruction of T2 is

executed.

a) Schedule 1 b) schedule 2

 T2 - T1 : All the instructions of T2 are executed before the first

instruction of Ti.

Schedule 9:

T1 T2

 Read(A);

A:=A-50;

Write(A);

read(B);

B:=B+50;

Write(B);

Read(A)

Temp :=A * 0.1;

A:=A-temp;

Write(A);

Write(B);

B:=B+temp;

Write(B);

The precedence Graph for Schedule 9 is:

 A serializablility order of the transactions can be obtained through

topological sorting, which determines a linear order consistent with the

particular order of the precedence graph.

 Recovery Isolation Levels:

 Recovery system:

 It’s an integral part of the database system.

 It stores the database to the consistant state that existed before the failure

T1 T2 T2
T1

T1 T2

CS 2255 – DATABASE MANAGEMENT SYSTEMS

120

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The recovery should provide high availability, that is, it must minimize the

time for which the database is not usable after a crash.

 Failure classification:

1. Transaction Failure:

 2types of errors.

1. Logical error:

 It occurs because of same internal condition,such as

bad input, data not found, overflow or resource limit

exceeded.

 When logic error occurs, transaction cannot continue

with it’s normal execution.

2. System Error:

 Eg of system error is deadlock, when system error

occurs, the system enters in an undesirable state and as

a result, transaction cannot continue with it’s normal

execution.

1. System crash:

 There is hard ware mal function or a bug-in the

database software or in the operating system, that

causes the loss of the content of volatile storage and

brings transaction processing to a halt.

 The assumption that hardware errors and bugs in the

software bring system to a halt, but do not corrupt the

non-volatile storage contents is known as the fail- stop.

2. Disk failure:

 Disk block loses it’s content as a result of either a head

crash or failure during a data transfer operation.

 Copies of the data on other disks or archival backup on

tertiary media, such as tapes are used to recover from the

failure.

 Recovery schemes:

1. log-based Recovery.

2. Shadow Paging.

 Log- based Recovery:

 Log is the most widely used structure for recording data base

modification.

 The log is a sequence of log records, recording all the update

activites in the data bases.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

121

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 There are several types of log records. An update log records

describes a single database write.

 1.Transaction Identifier:

 It’s the unique indentifier of the transaction that performed

the write operation.

 2.Data-item Identifier:

 It’s the unique identifier of the data item written. Typically

it’s the location on disk of the data item.

3. Old value is the value of the data items prior to the write

4. New value is the value that the data item will have after the write.

Various types of Log records are represented as:

 <Ti start>: Transaction Ti has started.

 <Ti, xj,v1,v2> : Transaction Ti has performed a write on

data item xj.xj had value v1 before the write and will have

value v2 after the write.

 <Ti commit>: Transaction Ti has committed.

 <Ti abort>: Transaction Ti has aborted.

Two techniques that uses log to ensure transaction atomicity despite failures are,

1. Deferred database Modification.

2. Immediate database modification.

3.

Deferred Database Modification (Deferred Update)

Eg: consider 2, Transactions to and T1 transaction T0.

Transfers $50 from account A to account B.

 To :

 Read(A);

 A: = A-50;

 Write(A);

 Read(B);

 B:= B+50;

 Write(B);

Let transaction T1 withdraws $100 from account C

 T1 : read(C);

 A:=A-50;

 Write(A);

 Read(B);

CS 2255 – DATABASE MANAGEMENT SYSTEMS

122

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 B:=B + 50;

 Write (B);

Let transaction T1 withdrawn $100 from account C

 T1 : Read(0);

C:C -100;

Write (c);

Portion of the database log corresponding to T0 and T1:

 <T0 Start>

 <T0, A, 950>

 <T0,B, 2050>

 <T0 commit>

 <T1 start>

 <T1,c,600>

 <T1 commit>

State of the Log and DataBase corresponding to T0 and T1:

 Log Data Base

<To start>

<T0, A, 950>

<To, B,250>

<T0 , commit>

<T1, Start>

<T1,C,600>

<T1,commit>

A=950

B=2050

C=600

Redo(Ti):

 It sets the value of all data items updated by Transaction Ti to the new values.

 The same log as that in shown at 3 different times:

(a) (b) (c)

<To start> <To start> <To start>

<To,A,950> <To,A,950> <To,A,950>

<To,B,2050> <To,B,2050> <To,B,2050>

 <To,commit> <To commit>

 <T1, start> <T1 , Start>

 <T1,c,600> <T1,c,600>

 <T1 commit>

1. Immediate DB Modification(Immediate Update)

 It allows database modifications to be output to the database while the

transaction is still in the active state.

 Data modification written by active transactions are called uncommitted

Modifications.

Eg: <To start>

 <To,A,1000,950>

CS 2255 – DATABASE MANAGEMENT SYSTEMS

123

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 <To,B,2000,2050>

 <To, commit>

 <T1 start>

 <T1,c,700,600>

 <T1, commit>

State of System Log and database corresponding to T0 and T1:

 Log Data Base

<To start>

<T0, A, 950>

<To, B,2050>

<T0 , commit>

<T1, Start>

<T1,C,600>

<T1,commit>

A=950

B=2050

C=600

 The recovery scheme uses 2 Recovery procedure:

1) Under (T1) restores the values of all data items updated by transaction Ti to old

values.

2) Redo (Ti) Sets the values of all data items updated by transaction Ti to the new

values.

 After a failure has occurred, the recovery scheme consults the log to determine

which transaction need to be redone and which need to be undone:

 Transaction Ti needs to be undone if the log contains the record <Ti start>, but

does not contain the record <Ti commit>

 Transaction Ti needs to be redone if the log contains both the record <Ti start>

and the record <Ti commit>

Case 1: write (B)

Case 2: write (C)

Case 3: <T1 commit>

The same log, shown at 3 different times

<To start> <To start>

<To,A,1000,950>

<To start>

To,A,1000,950>

CS 2255 – DATABASE MANAGEMENT SYSTEMS

124

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

<To,B,2000,2050>

<To commit>

<T1 start>

<T1, ci 700,600>

<To,B,2000,2050>

<To commit>

<T1 start>

<T1, ci 700,600>rt>

<T1 commit>

2. Shadow paging

 Its an alternative to log base crash-revocery tech. this scheme is useful if

transcations execute serially.

 The Data base is partitioned into some number of fixed length blocks, which

are referred to as pages

 The pages are stored in any random order on disk

 Therefore, there should be some way to find the page of db for nay given for

this purpose page table is used.

 Page table has n-entries which points to n diff. pages on the disk

 Each entry of the page table contains pointer to one page on the disk.

Sample page table

CS 2255 – DATABASE MANAGEMENT SYSTEMS

125

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

The key idea behind the shadow paying tech. is to maintain 2 pages tables

during the life of a transaction.

1. Current page table

2. Shadow page table.

Write operation is executed as follows:

1. If the I th page is not already in main memory then issue i/p(x)

2. If this is the write first performed on the ith page by this transaction,

then the system modifies the current page table as follows:

 Find an unused page on disk

 Delete the pagefound in step2 (a) from the list of

free page frames

 Modify the current page table such that the ith entry

points to the page found in step2 (a)

3. Assign the value of xj to x in the buffer page

Shadow and current page table

CS 2255 – DATABASE MANAGEMENT SYSTEMS

126

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Advantages

1. Shadow paying requires fewer disk accesses then the log base

recovery

2. No overhead of writing record.

3. Recovery from crashes is significantly faster, since no undo and

redo operations are needed.

Disadvantages

1. Commit overhead

2. Data fragmentation

3. Garbage collection

4. Hard to extend algorithms to allow transaction to run concurrently.

SQL Facilities for Concurrency:

The SQL standard defines four levels of transaction isolation in terms of three

phenomena that must be prevented between concurrent transactions. These

undesirable phenomena are:

Dirty read

A transaction reads data written by a concurrent uncommitted transaction.

No repeatable read

A transaction re-reads data it has previously read and finds that data has been

modified by another transaction (that committed since the initial read).

Phantom read

A transaction re-executes a query returning a set of rows that satisfy a search

condition and finds that the set of rows satisfying the condition has changed due to

another recently-committed transaction..

SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

PostgreSQL offers the read committed and serializable isolation levels.

Read Committed Isolation Level

Read Committed is the default isolation level in PostgreSQL. When a

transaction runs on this isolation level, a SELECT query sees only data committed

before the query began; it never sees either uncommitted data or changes committed

during query execution by concurrent transactions. (However, the SELECT does see

CS 2255 – DATABASE MANAGEMENT SYSTEMS

127

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

the effects of previous updates executed within its own transaction, even though they

are not yet committed.) In effect, a SELECT query sees a snapshot of the database as

of the instant that that query begins to run. Notice that two successive SELECTs can

see different data, even though they are within a single transaction, if other

transactions commit changes during execution of the first SELECT.

UPDATE, DELETE, and SELECT FOR UPDATE commands behave the

same as SELECT in terms of searching for target rows: they will only find target rows

that were committed as of the query start time. However, such a target row may have

already been updated (or deleted or marked for update) by another concurrent

transaction by the time it is found. In this case, the would-be updater will wait for the

first updating transaction to commit or roll back (if it is still in progress). If the first

updater rolls back, then its effects are negated and the second updater can proceed

with updating the originally found row. If the first updater commits, the second

updater will ignore the row if the first updater deleted it, otherwise it will attempt to

apply its operation to the updated version of the row. The query search condition

(WHERE clause) is re-evaluated to see if the updated version of the row still matches

the search condition. If so, the second updater proceeds with its operation, starting

from the updated version of the row.

Because of the above rule, it is possible for updating queries to see inconsistent

snapshots --- they can see the effects of concurrent updating queries that affected the

same rows they are trying to update, but they do not see effects of those queries on

other rows in the database. This behavior makes Read Committed mode unsuitable for

queries that involve complex search conditions. However, it is just right for simpler

cases. For example, consider updating bank balances with transactions like

BEGIN;

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;

COMMIT;

If two such transactions concurrently try to change the balance of account

12345, we clearly want the second transaction to start from the updated version of the

account's row. Because each query is affecting only a predetermined row, letting it see

the updated version of the row does not create any troublesome inconsistency.

Since in Read Committed mode each new query starts with a new snapshot

that includes all transactions committed up to that instant, subsequent queries in the

same transaction will see the effects of the committed concurrent transaction in any

case. The point at issue here is whether or not within a single query we see an

absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is

adequate for many applications, and this mode is fast and simple to use. However, for

applications that do complex queries and updates, it may be necessary to guarantee a

more rigorously consistent view of the database than the Read Committed mode

provides.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

128

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Serializable Isolation Level

Serializable provides the strictest transaction isolation. This level emulates

serial transaction execution, as if transactions had been executed one after another,

serially, rather than concurrently. However, applications using this level must be

prepared to retry transactions due to serialization failures.

When a transaction is on the serializable level, a SELECT query sees only data

committed before the transaction began; it never sees either uncommitted data or

changes committed during transaction execution by concurrent transactions.

(However, the SELECT does see the effects of previous updates executed within its

own transaction, even though they are not yet committed.) This is different from Read

Committed in that the SELECT sees a snapshot as of the start of the transaction, not as

of the start of the current query within the transaction. Thus, successive SELECTs

within a single transaction always see the same data.

UPDATE, DELETE, and SELECT FOR UPDATE commands behave the

same as SELECT in terms of searching for target rows: they will only find target rows

that were committed as of the transaction start time. However, such a target row may

have already been updated (or deleted or marked for update) by another concurrent

transaction by the time it is found. In this case, the serializable transaction will wait

for the first updating transaction to commit or roll back (if it is still in progress). If the

first updater rolls back, then its effects are negated and the serializable transaction can

proceed with updating the originally found row. But if the first updater commits (and

actually updated or deleted the row, not just selected it for update) then the serializable

transaction will be rolled back with the message

ERROR: Can't serialize access due to concurrent update because a serializable

transaction cannot modify rows changed by other transactions after the serializable

transaction began.

When the application receives this error message, it should abort the current

transaction and then retry the whole transaction from the beginning. The second time

through, the transaction sees the previously-committed change as part of its initial

view of the database, so there is no logical conflict in using the new version of the row

as the starting point for the new transaction's update.

Note that only updating transactions may need to be retried --- read-only

transactions will never have serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees

a wholly consistent view of the database. However, the application has to be prepared

to retry transactions when concurrent updates make it impossible to sustain the

illusion of serial execution. Since the cost of redoing complex transactions may be

significant, this mode is recommended only when updating transactions contain logic

sufficiently complex that they may give wrong answers in Read Committed mode.

Most commonly, Serializable mode is necessary when a transaction performs several

successive queries that must see identical views of the database.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

129

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Question Bank

2 Mark Questions:

1. What is transaction?

2. What are ACID properties?

3. What are the two operations accomplished by the access of data base?

4. What are all the transaction state?

5. What are the two options available in aborted state?

6. What are the two types of serializability?

7. What are the necessary conditions for conflict serializability?

8. Write an example for non-recoverable procedures.

9. Why is it necessary to have control of concurrent execution of transaction? How

is it made possible?

10. What is time stamp-ordering scheme? Specify

11. Define deadlock.

12. Define timestamp.

13. What are the various modes in which a data item be locked?

14. State the benefits of strict two-phase locking.

15. What are the two methods to prevent deadlock using timestamp?

16. What is check point?

17. List the recovery and advanced recovery techniques.

18. Define uncommitted modification

19. How can we handle disk crashes

20. What is shadow paging?

16 Mark Questions:

1. Explain the following protocols for concurrency control:

a. Lock based protocols.

b. Time stamp based protocols.

2. Write short notes on shadow paging.

3. Discuss on two-phase locking protocol.

4. Write short notes on log-based recovery.

5. Explain testing for serializability with respect to concurrency control schemes.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

130

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

UNIT – V IMPLEMENTATION TECHNIQUES

Overview of physical storage media:

 The storage media is classified by the speed with which data can be accessed cost

per unit of data to buy the medium, and by the medium’s reliability.

Cache memory:

The following are the features of a cache memory. They are

 It is the fastest and most costly form of storage.

 It is small in size

 It is managed by computer system hardware.

Main memory:

 The general purpose machine instructions operate on main memory.

 Although it contains mega bytes or even giga bytes, it is small for storing the entire database.

Hence it is too expensive.

 The contents of main memory are usually lost if a power failure or system crash occurs.

Flash memory:

 It is also known as Electrically Erasable Programmable Read-Only Memory (EEPROM).

 The contents are not lost due to power failure.

 Reading data from flash memory takes less than 100 nano seconds (1/1000 of micro seconds).

 Writing data to flash memory is more complicated (i.e.) data can be written once that takes

about 4 to 10 micro seconds and cannot be overwritten directly.

 If we want to overwrite, the entire memory has to be erased.

 The main drawback is it supports only limited no of erase cycles ranging from 10000 to 1

million.

Magnetic disk storage:

 This is the primary medium for the long term online storage of data.

 The entire database is stored on magnetic disk.

 The system must move the data from the disk to the main memory so that they can be accessed.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

131

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 If any modifications to the database it should be written to the magnetic disk.

 Power failures and system crashes doesn’t affect the disk storage.

 It is referred to as “direct access storage” because it is possible to read data from any location

on disk.

Optical storage:

 The most popular forms of optical storage are compact disk (CD), which can hold upto 640

mega bytes of data, and the digital video disk (DVD), which can hold 4.7 or 805 giga bytes of

data per side of the disk.

 For two sided disk upto 17 GB can be stored.

 Data are stored optically on a disk, and are read by a laser.

 The optical disks used in read only compact disks (CD-ROM), or read only digital video disks

(DVD-ROM) cannot be written, but are supplied with data pre-recorded.

 There are “read once” version of compact disks called CD-R and digital video disk called

DVD-R, which can be written only once. Such disks are often called Write once, read many

(WORM) disks.

 There are also “multiple write” versions of compact disks called CD-RW and also digital video

disks DVD-RW and DVD-RAM, which can be written multiple times.

 Juke box systems contain a few drives and numerous disks that can be loaded into one of the

drives automatically.

Tape storage:

 Tape storage is used for backup and archival data. It is much cheaper than disks but data access

is much slower because the tape must be accessed sequentially from the beginning. Hence it is

referred to as “sequential access storage”.

 Tapes have a high capacity and can be removed from the tape drive.

 Hence they are well suited for archival data.

 Tape juke boxes are used to hold exceptionally large collection of data from satellites, such as

remote sensing data from satellites.

 The various storage media can be organized in a hierarchy according to

their speed and their cost. The higher levels are expensive, but are faster. Down the

hierarchy the cost per bit decreases whereas the access time increases.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

132

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The fastest storage media like cache and main memory are referred to as

primary storage. The media in the next level like magnetic disk are referred to as

secondary or online storage. The media in the lowest level of hierarchy like magnetic

tapes and optical disks and juke boxes as referred to as tertiary storage or offline storage.

 Storage volatility: when the power to the device is removed it looses its

contents. This is known as volatile storage. The cache and main memory are volatile

storage. Other storage devices are non volatile storage.

Magnetic disk:

 It is used for storing large amount of data. The most basic unit is bit of

information. Bits are grouped into bytes or characters. Byte sizes from 4 to 8 bits. The

capacity of the disk is measured by the no of bytes it can store.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

133

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Physical characteristics of Disks:

 Each disk platter has a flat circular shape.

 Its two surfaces are covered with a magnetic material, and information is recorded on the

surfaces.

 Platters are made from rigid metal or glass and are covered with magnetic recording material.

Such magnetic disks are called hard disks.

 The drive motor spins the disk at a constant high speed like 60, 90,120 or even 250 revolutions

per second.

 There is a read write head positioned just above the surface of the surface of the platter.

 The disk surface is logically divided into tracks, which are subdivided into sectors.

 A sector is the smallest unit of information that can be read from or written to the disk.

 The inner tracks are of smaller length, around 200 sectors per track in the inner tracks and

around 400 sectors per tracks in the outer tracks.

 A block is a contiguous sequence of sectors from a single track of one platter.

 Each side of the platter of a disk has a read-write head, which moves across the platter to

access different tracks.

 A disk contains many plotters and the read write heads of all tracks are mounted on a single

assembly called a disk arm, and move together.

 The disk plotters mounted on a spindle and the heads mounted on the disk arm are together

known as head-disk assemblies.

 Since the head on all the platters move together, when the head on the platter is on the i th

track, the heads on all other plotters are also on the i th track of their respective platters.

 Hence the i th tracks of all the platters together are called the i th cylinder.

 The read-write heads are kept as close as possible to the disk surface to increase the recording

density.

 The head typically floats or flies only microns from the disk surface.

 The spinning of the disk creates small breeze, and the head assembly is shaped so that the

breeze keeps the head floating just above the disk surface.

 The platters should me machined carefully to be flat because the head floats close to the

surface and it may cause head crashes.

 The fixed head disk has a separate head for each track.

 This allows the computer to switch from track to track quickly without having to move the

head assembly, but because of large number of heads, it’s expensive.

 A disk controller interfaces between the computer system and the actual hardware of the disk

drive.

 Disk controller also attaches checksums to each sector that is written, the checksum is

computed from the data written to the sector.

 When the sector is read back, the controller computes the checksum again from the retrieved

data and compares it with the stored checksum.

 If the data are corrupted, with a high probability the newly computed checksum will not match

the stored checksum.

 If such an error occurs, the controller will retry the read several times.

 If the error continues to occur the controller will signal a read failure.

Performance measures of disks:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

134

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The main measures of the qualities of a disk are capacity, access time, data

transfer rate, and reliability.

Access time:

 It is the time when a read or write request is issued to when data transfer

begins.

Seek time:

 To access the data on a given sector of a disk, the arm first must move so

that it is positioned over correct track, and then wait for the sector to appear under it as

the disk rotates. The time for repositioning the arm is called the seek time.

The average seek time:

 The average seek time is the average of the seek times, measured over a

sequence of random requests.

Latency time:

 Once the seek has started, the time spent waiting for the sector to be

accessed to appear under the head is called the rotational latency. The average latency

time of the disk is one-half the time for a full rotation of the disk.

Data transfer rate:

 It is the rate at which data can be retrieved from or stored to the disk.

Mean time to failure:

 It is the reliability of the disk. The mean time to failure of a disk is the

amount of time the system runs without any failure.

RAID:

 A variety of disk organization techniques, collectively called redundant

array of independent disks. It is proposed to achieve improved performance and

reliability. RAID systems are used for high reliability and higher performance rate.

Improvement of reliability via redundancy:

 The solution to the problem of reliability is to introduce redundancy. The simplest

but most expensive approach to introducing redundancy is to duplicate every disk. This

technique is called Mirroring. A disk then consists of two physical disks, and every write

operation is carried on both disks. If one of the disks fails then the data can be read from

the other disk. Data will be lost only if the second disk fails before the first disk is

repaired.

Improvement of performance via parallelism:

 With disk mirroring, the rate at which read requests can be handled is doubled,

since the read request can be sent to either disks. The transfer rate of each read is the

same as in a single disk system, but the umber of reads per unit time has doubled. With

CS 2255 – DATABASE MANAGEMENT SYSTEMS

135

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

multiple disks we can improve the transfer rate as well by stripping data across multiple

disks. Data stripping consist of splitting the bits of each byte across multiple disks. Such

stripping is called bit-level stripping. Block –level stripping stripes blocks across multiple

disks. It treats the array of disks as a single large disk, and logical numbers are given to

each block.

 There are two main goals of parallelism in a disk system:

 Load-balance multiple small access, so that the throughput of such accesses increases.

 Parallelize large access so that the response time of large access is reduced.

RAID Levels:

 Mirroring provides high reliability, but it is expensive. Stripping provides high

data transfer rates, but does not improve reliability. Various alternative schemes provide

redundancy at lower cost by combining disk stripping with parity bits. These schemes are

classified into RAID levels.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

136

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Level 0:

 Refers to disk arrays stripping at level of blocks, but without redundancy.

Level 1:

 Refers to disk mirroring with block stripping.

Level 2:

 Known as memory-style error correcting code organization employs parity bits.

Memory systems have long used parity bits for error detection and correction. Each byte in a

memory system may have a parity bit associated with it, that records whether the numbers of bits

in the byte that are set to 1 is even (parity=0) or odd (parity=1) .If one of the bit in the byte gets

damaged, (either a 1 becomes a 0 or vice versa), the parity of the byte changes and thus do not

match the stored parity. The idea of error-correcting codes can be used directly in disk arrays by

striping bytes across disks.

Level 3:

 Bit interleaved parity organization. The idea behind is that the disk controllers can

detect whether a sector has been read correctly or not , so a single parity bit can be used for both

error detection and correction. If one of the sectors gets damaged, the system knows exactly which

sector it is and for each bit in the sector, the system can figure out whether it is a 1 or 0 by

computing the parity of the corresponding bits from sectors in other disks. If the parity of the

remaining bit is equal to the stored parity, the missing bit is equal to 0 or it is 1.

 Benefits: less expensive compared to level 2.

 it needs only one parity disk for several regular disks and thus reduces storage

space

 the transfer rate is N times faster compared to level 1 and 2.

Level 4:

 Block interleaved parity organization. Uses block level stripping like level

0. Keeps the parity block on a separate disk. A block read accesses only one disk,

allowing other request to be processed by the other disks. Thus the data transfer rate for

each access is slower, but multiple read access can proceed in parallel leading to higher

overall I/O rate. The transfer rate for large read and write is high due to parallelism.

Level 5:

 Block interleaved distributed parity. It partitions data and parity among all

N+1 disks instead of storing data in N disks and parity in one disk. Hence all disk can

participate in read request. The parity block cannot store parity for blocks in the same

disk because in case of disk failure would result in loss of data as well as parity.

Level 6:

 It stores extra redundant information to guard against multiple disk

failures. Instead of using parity, it uses error correcting codes such as reed Solomon

CS 2255 – DATABASE MANAGEMENT SYSTEMS

137

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

codes. 2 bits of redundant data are stored for every 4bits of data and the system can

tolerate 2 disk failures.

Choice of RAID Levels:

 The factors to be taken into account when choosing a RAID Level are

 Monetary cost of extra disk storage requirements.

 Performance requirements in terms of number of I/O operations

 Performance when a disk has failed

 Performance during rebuild (i.e.) while the data is failed disk is being rebuilt on a new disk)

Hot Swappable:

 Disks can be removed and replaced by new ones without turning power off. Hot

swappable reduces mean time to repair.

File organization:

A file is organized logically as sequence of records. These records are mapped

onto disk blocks. Files are provided as basic construct in operating system. One approach

to mapping the database to files is to use several files, and to store records of only one

fixed length in any given file. Another way id to structure the files do that it can

accommodate multiple lengths of records. Files of fixed length records are easier to

implement than variable length records.

Fixed length records:

 Consider a file of account records for bank database. Each record of this

file is defined as

 Type deposit = record

 Accno: char (10);

 Branchname: char (22);

 Balance: real

 End;

CS 2255 – DATABASE MANAGEMENT SYSTEMS

138

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

If we assume that each character occupies 1 byte and that a real occupies 8 bytes,

then the record account is of length 40 bytes. A simple method is to use the first 40 bytes

for the first record and the next 40 bytes for the second record, and so on. There are 2

problems with this approach. They are

 It is difficult to delete a record from this structure. The space occupied by the

record to be deleted must be filled with some other record of the file, or there

must be a way of marking deleted records so that they can be ignored.Unless the

block size happens to be multiples of 40 some records will cross the block

boundaries. (i.e.) part of the record will be in one block and another part in

another block.

 When a record is deleted, the records that come after it are moved into the free

space occupied by the deleted record. This will cause moving large no of records.

Hence instead of this method the final record can be moved to the free space

occupied by the deleted record. But this will cause additional block access. Hence

it is acceptable to leave open the space occupied by the deleted record and wait

for subsequent insertion. A simple marker can be given to the deleted record but it

is not enough because it is hard to find the available space while insertion. Hence

an additional structure is required.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

139

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 At the beginning of the file, certain no of bytes are allocated as a file header. The

header will contain the information about the file. The address of the first record whose

contents are deleted should be stored in the header.

 The first record should contain the address of the second available record. Since

they point to the location of a record it is also referred to as pointers. The deleted records

thus forms a link list, which is referred to as free list. If no space is available, the new

record is added to the end of file.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

140

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Variable –Length records:

 Variable length records arise in database in several ways.

 Storage of multiple record types in a file.

 Record types that allow variable lengths for one or more fields.

 Record types that allow variable repeating fields.

 Consider a different representation of the account information stored in the

file in which one variable length record is used for each branch name and for all account

information for that branch.

 Type account-list = record

 Branchname: char (22);

 Account-info: array [1….infinity] of

 Record;

 Accno: char (10)

 Balance: real;

 End;

 End;

There is no limit of how large a record can be.

Byte- String representation:

 A simple method for implementing variable length records is to

attach a special “end of record” symbol to the end of each record. Each record can be

stored as string of consecutive bytes. Another type of byte string representation stores the

record length at the beginning of each record, instead of using end of record symbol.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

141

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Disadvantage:

 It is not easy to reuse the space occupied by a deleted record.

 There is no space for records to grow longer. If a variable length record becomes

longer, it must be moved. Movement is costly if pointers to record that are stored

elsewhere in the database.

 A modified form of byte string representation called “slotted page”

structure is commonly used for organizing records within a single block. The slotted page

structure has a header at the beginning of each block, containing

 The no of record entries in the header.

 The end of free space in the block.

 An array whose entries contain the location and size of each record.

 The actual records are allocated contiguously in the block, starting from

the end of the block. The free space in the block is contiguous, between the final entry in

the header array, and the first record. If a record is inserted, space is allocated for it at the

end of free space, and an entry containing its size and location is added to the header.

 If a record is deleted the space that is occupied is freed and its entry is said

to deleted. The records followed by the deleted records are moved further so that the free

CS 2255 – DATABASE MANAGEMENT SYSTEMS

142

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

space created by the deletion gets occupied and all free space is again between final entry

in the header array and the first record. The end of free space pointer in the header is

updated as well. In this method the pointer points to the entry in the header that contains

that contains the actual location and not to the records directly.

Fixed-Length Representation:

 Another way to implement variable length records efficiently in a file

system is to use one or more fixed length records to represent one variable length record.

There are two ways of doing this:

1. Reserved space:

 If there is a maximum record length that is never exceeded, we can use

fixed length records of that length. Unused space is filled with a special null, or end

of record, symbol.

2. List representation:

 We can represent variable length records by lists of fixed length records,

chained together by pointers. If we choose to apply reserved-space method to account

example, then select maximum length record with a maximum of 3 accounts per

branch. Those branches with less than 3 accounts then they will have null fields, that

field can be represented using end of record symbol.

 The reserved space method is useful when most records have a length

close to the maximum. Otherwise a significant amount of space may be wasted. Some

branches may have many more accounts. Hence linked list method is used. To represent

this, a pointer field is added.

 The file structures of figures both use pointers. The difference is that, in

fig 1 we use pointers to chain together only deleted records. Whereas in fig 2, we chain

together all records pertaining to the same branch.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

143

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 A disadvantage to the structure of fig 2 is that the waste space in all

records except the first in a chain. The first record needs to have the branch name value

but subsequent records do not. We need to include a field for branch name in all records,

lest he records not be of fixed length. To deal with this problem we allow to kinds of

blocks in our file

1. Anchor blank contains the first record of a chain.

2. Overflow block: contains records other than those that are the first record of the

chain. Thus all the records within a block have the same length, even though not all

records in the file have the same length.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

144

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Organization of Records in Files:

Several ways:

1. Heap file Organization:

 Any record can be placed anywhere in the file where there is space for the

record

 There is no ordering of records.

 There is a single file for each relation.

2. Sequential file Organization:

 Records are stored in sequential order according to the values of a “search

key” of each record

3. Hashing File Organization:

 Hash function is computed on some attribute of each record.

 Result of the hash function specifies in which block of the file the record

should be placed.

 A separate file is used to store the records of each relations.

 An clustering file organization, records of several different relations are

stored in the same file.

4. Sequential file organization:

 It’s designed for efficient processing of records in sorted order based on

some search-key.

 Search key is any attribute or set of attributes it need not be the primary

key or even a super key.

 To permit fast retrieval of records in search –key order, we chain together

records by pointers.

 The pointer in each record points to the next record in search-key order.

A1

 aa 1000

A2

 bb 2000

A3

 cc 3000

A4

 dd 4000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

145

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Sequential File for Account Records:

 Sequential file organization allows records to be read in sorted order, that

can be useful for display purposes.

 It’s difficult to maintain physical sequential order as records are inserted

and deleted. Since it’s costly to move many records as a result of a single

insertion or deletion. We can manage deletion by using pointer chains.

Rules:

1. Locate the record in the file that comes before the record to be inserted in search –

key order.

2. If there is a free record within the same block as this record, insert the new record

there.

 Insert the new record in an overflow block.

 The file after the insertion of the record(North Town, A888,800).

 Few records need to be stored in overflow block.

 Below search-key order and physical order may be totally lost.

 Sequential processing will become much less efficient. At this point,

the file should be reorganized.

3. Clustering File Organization:

 Many Relational-database systems store each relation in a separate

file, so that they can take full advantage of the file system that the

 operating system provides.

 Tuples of relation can be represented as fixed length records.

 This simple implementation of a relational database system is well

suted to low cost database implementation.

 Many large-scale database system do not rely directly on the

underlying operating system for the file Management.

 One large os file is allocated to the database systems.

 Database system stores all relations in this one file and manages the

file itself.

A5

 ee 5000

A6

 ff 6000

A7

 gg 7000

A8

 hh 8000

CS 2255 – DATABASE MANAGEMENT SYSTEMS

146

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Advantages ofstoring many relation in one file, SQL Query for the

bank database.

Select account-number ,customer_name,customer_street,

customer_city, from depositor, customer.

 Where depositor_customer_name=Customer.customer_name;

 Join two relations. Depositor and customer.

 Depositor Relation Customer Relation

 Clustering file organization stores related records of 2 or more

relations in each block such a file organization allows us to

read records that would satisfy the join condition by using one

block read.

 Clustering has enhanced processing of a particular

join,(depositor and customer) but it results in slow processing

of their types of query.

Clustering File Structure:

 AA MAIN Brooklyn

 AA A1

 AA A2

 AA A3

 BB

Putnam

 stamford

 BB A4

 Clustering File Structure with pointer chains

 AA

MAIN

 Brooklyn

 AA A1

 AA A2

 AA A3

 BB

putnam

 stamford

 BB A4

 Customer_name

Account_no

 A A A1

A A A2

 AA A3

B B A4

Customer_name

Customer_street

Customer_city

 AA Main Brooklyn

 BB Putnam Stamford

CS 2255 – DATABASE MANAGEMENT SYSTEMS

147

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

STRUCTURE FOR FILES:

Two Basic kind of Indices:

1. Ordered Indices: Based on a sorted ordering of the values.

2. Hash Indices: Based on a uniform distribution of values across a range of buckets.

 The bucket to which a value is assigned is determined by a function called hash

function.

 Each technology must be evaluated on the basis of these factors.

1. Access Types:

 Types of access that are supported efficiently.

 It can include finding records with a specified attributes values and finding

records whose attributes values in a specified range.

2. Access time:

 The time it takes to find a particular data items or set of items using the

technology in question

3. Insertion time:

 The time it takes to insert a new data items.

 This value includes the time it takes to find correct palce to insert the new

data as well as the time it takes to update the index structure.

4. Deletion time:

 The time it taken to delete a data item, this value includes the time it taken

to find the itmes to be deleted, as well as the time it takes to update the

index structure.

5. Space overhead:

 The additional space occupied by an index structure provided that the

amount of additional space is moderate it’s usually worth-while to

sacrifice the space to achieve improved performance.

Indexing And Hashing:

 An index for a file in a database system works in much the same way as

the index in a book. Database system indices play the same role as book indices or card

catalogs in library. There are two basic kinds of indices:

Ordered indices: This is based on a sorted ordering of the values.

Hash indices:

This is based on a uniform distribution of values across range of buckets. The

bucket to which a value is assigned is determined by a function, called a hash function.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

148

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 There are several techniques for both the indices, but none of these are the best.

Each technique is suited to only particular database applications. Each technique must be

evaluated on the basis of the following factors,

Access types:

 Finding records with a specific attribute value and finding records whose attribute

values fall in a specified range.

Access time:

 The time it takes to find a particular data item, or set of items, using the

technique.

Insertion time:

 The time it takes to insert a data item. This value includes the time it takes to find

the correct place to insert a new data item, as well as the time it takes to update the index

structure.

Deletion time:

 The time it takes to delete the data item. This value includes the time it takes to

find the item to be deleted as well as the time it takes to update the index structure.

Space overhead:

 The additional space occupied by an index structure. An attribute or a set of

attributes used to look up records in a file is called a search key.

Ordered indices:

 To gain a fast random access to records in a file, an index structure is used. Each

index structure is associated with a particular search key. The records in the index file

may themselves be stored in some sorted order. A file may have several indices, on a

different search keys. If the file containing the records is sequentially ordered then a

primary index is used.(index on primary key) primary index are also called as clustering

indices. Indices whose search key specifies an order different from the sequential order of

the file are called secondary indices or non clustering indices.

Primary indices:

 These indices are designed for both sequential processing of entire file and

random access to individual access. The figure below shows the records are stored in

search key order with branch name used as search key.

Dense and sparse indices:

 An index record or index entry consists of a search key value and pointers

to one or more records with that value as their search key value. The pointer to a record

consists of the identifier of a disk block and a n offset within the disk block to identify the

record within the block. There are two types of ordered indices

CS 2255 – DATABASE MANAGEMENT SYSTEMS

149

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Dense index:

 An index record appears for every search key value in the file.

 The index record contains the search key value and a pointer to the first data record with that

search key value.

 The rest of the records with the same search key value are stored sequentially after the first

record.

Sparse index:

 An index records appears for only some of the search key values.

 Each index record contains a search key value and a pointer to the first data record with that

search key value.

 To locate a record, find the index entry with the largest key value that is less than or equal to

the search key value.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

150

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Secondary indices:

 Secondary indices may be dense, with an index entry for every search

value, and a pointer to every record in the file. A secondary index on a candidate key

looks just like a dense primary index, except that records pointed to by successive values

in the index are not stored sequentially.

 However secondary indices may have a different structure from primary

indices. If the search key of the primary indices is not a candidate key, it suffices if, the

index points to the first record with a particular value for the search key, since the other

records can be fetched by a sequential scan of the file.

 In contrast, if the search key of a secondary index is not a candidate key, it

is not enough to point to just the first record with each search key value. The remaining

records with the same search key value could be anywhere in the file, since the records

are ordered by search key of the primary index, rather than by the search key of the

secondary index. Therefore the secondary index must contain pointers to all the records.

 An extra level of indirection can be used to implement secondary indices

on search keys that are not candidate keys. The pointers in such a secondary index do not

point directly to the file. Instead each points to a bucket that uses an extra level of

indirection on the account file, on search key balance.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

151

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Multilevel indices:

 Indices with two or more levels are called multilevel indices. Searching

for records in multilevel index requires significantly fewer I/O operations than searching

for records by binary search.

 If an index is sufficiently small to be kept in main memory, the search

time to find an entry is low. If the index is so large that it must be kept on disk, a search

for an entry requires several disk block reads. If the index occupies b blocks, binary

search requires as many as [log2 (b)] blocks to be read. For 100 blocks index, binary

search requires seven block reads.

 To deal with this problem, two level index structure is used. To locate a

record, we first use binary search on the outer index to find the record for the largest

search key value less than or equal to the one that we desire. The pointer points to the

block of inner index. We scan the book until we find the record that has the largest search

key value less than or equal to the one that we desire. The pointer in this record points to

the block of the file that contains the record for which we are looking.

 Assume that the outer index is already in memory, then using the two

levels of indexing, only one index block can be read, rather than the seven read with

binary search. In such case another level of index can be created.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

152

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Hashing Technique:

 One disadvantage of sequential file organization is that, to locate

data either an index structure should accessed or binary search should be used. This

results in more I/O operations. File organization based on the technique of hashing allow

us to avoid accessing an index structure. Hashing also provides a way of constructing

indices. There are two types of hashing techniques.

 Static hashing

 Dynamic hashing

Static hashing:

 In a hash file organization, the address of the disk block containing

a desired record can be obtained directly by computing a function on a search key value

of a record. The term bucket is used to denote a unit of storage that can store one or more

records. A bucket is typically a disk block but could be chosen to be smaller or larger

than a disk block.

 Let k denote the set of all search key values, and let b denote the

set of all bucket addresses. A hash function h is a function from k to b. Let h denote hash

function.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

153

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 To insert a record with search key k, h (ki) gives the address of the

bucket for that record. If there is space in the bucket to store the record then the record is

stored in the bucket.

 To perform a lookup on the search key value ki, then the bucket is

searched using h (ki) address. Suppose that two search keys k5 and k7 have same hash

value and when a lookup is performed then h (k5) will contains records with search key

values k5 and k7. Thus the search key value of every record in the bucket should be

checked to verify that the record is one that we want.

 In case of deletion, the search key value of the records to be

deleted is ki, then the bucket for that record is searched using h (ki) and the record is

deleted.

Hash function:

 A hash function distributes the stored keys uniformly across all the

buckets, so that every bucket has the same no of records.

 * The distribution is uniform the hash function assigns each bucket the same no of

search key values from the set of all possible search key values.

 * The distribution is random each bucket will have the nearly the same no of values

assigned to it regardless of the actual distribution of search key values. The hash value

will not be correlated to any externally visible ordering by the length of the search key

values, such as alphabetic ordering or ordering by length of the search keys, the hash

function will appear to be random.

Handling of bucket overflows:

 When a record is inserted, the bucket to which it is mapped has space to

store the record. If the bucket does not have enough space, a bucket overflow is said to

occur. Bucket overflow can occur for several reasons:

 Insufficient buckets:

 No of buckets > total no of records that will be stored / the no of

 records that will fit in a bucket.

 The total no of records will be known when the hash function is chosen.

 Skew:

 Some buckets are assigns more records than others, so a bucket may

overflow even when other buckets still have space. This situation is called bucket skew.

Skew can occur for two reasons,

 Multiple records may have the same search key.

 The chosen hash function may result in non uniform distribution of search keys.

 Bucket overflow can be handled using overflow buckets. If a record must

be inserted into a bucket b, and b is already full, the system provides overflow bucket for

b, and inserts the record into the overflow bucket. If the overflow bucket is also full, the

system provides another overflow bucket and so on. All the overflow buckets of a given

CS 2255 – DATABASE MANAGEMENT SYSTEMS

154

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

bucket are chained together in a linked list as shown in the fig. overflow handling using

such a linked list is called overflow chaining.

 To handle this overflow chaining the lookup algorithm should be changed.

As before the system uses the hash function on the search key to identify a bucket b. the

system must examine all the records in bucket b to see whether they match the search key

as before. In addition, if bucket b has overflow buckets the system must examine the

records in all the overflow buckets also.

 This form of hash structure is sometimes referred to as closed hashing. In

an alternative approach called open hashing, the set of buckets is fixed, and there are no

overflow chains. Instead if a bucket is full, the system inserts records in some other

bucket in the initial set of buckets b.

 One policy is to use the next bucket in cyclic order that has space. This

policy is called linear probing. Open hashing has been used to construct symbol tables for

compilers and assemblers, but closed hashing is preferable for database because the

deletion under open hashing is troublesome.

Hash indices:

 Hashing can be used for index structure creation. A hash index organizes

the search keys, with their associated pointers into a hash file structure. A hash index is

constructed as follows.

 Apply hash function on a search key to identify a bucket.

 Store the key and its associated pointers in the bucket or in overflow buckets.

 The fig below shows as secondary hash index on the account file, for a

search key account number. The hash function in the fig computes the sum of the digits

of the account number module 7. The hash index has 7 buckets, each of size 2. One of the

buckets has 3 keys mapped to it, so it has an overflow bucket.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

155

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Dynamic hashing:

 Most databases grow longer overtime. If we use static hashing for such

databases then we have 3 options:

 Choose a hash function based on the current file size. This option will result in

 performance degradation as the database grows.

 Choose a hash function based on the anticipated size of the file at some point

 in the future. Although performance degradation is avoided, a significant amount

of space may be wasted initially.

 Periodically reorganize the hash structure in response to the file growth. Such

reorganization involves choosing a new hash function, recomputing the hash function on

every record in the file, and generating new bucket assignments. This reorganization is

massive and time consuming operation.

 These problems can be avoided using dynamic hashing. Dynamic hashing

technique allows the hash function to be modified dynamically to accommodate the

CS 2255 – DATABASE MANAGEMENT SYSTEMS

156

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

growth or shrinkage of the database. One of the forms of dynamic hashing is extendable

hashing.

Extendable hashing:

 It handles the changes in the database size by splitting and coalescing

buckets as the database grows and shrinks. As a result space efficiency is retained. Since

the reorganization is performed on only one bucket at a time, the resulting performance

overhead is acceptably low.

 With extendable hashing, the hash function h is chosen with desirable

properties of uniformity and randomness. We do not create a bucket for each hash value

instead buckets are created on demand, as records are inserted into the file. The entire b

bits of the hash value are not used initially. At any point we use i bits, where 0 < i <= b.

These i bits are used as an offset into an additional table of bucket addresses. The value

of i grows and shrinks with the size of the database.

 The fig shows extendable hash structure. The i appearing above the bucket

address table indicates I bits of the hash value h (k) are required to determine the correct

bucket for K. this number will change as the file grows.

Advantages:

 The performance does not degrade as the file grows.

 It saves space.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

157

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Disadvantage:

 Lookup involves an additional level of indirection, since the system access the bucket

address table before accessing the bucket itself.

 Implementation of extendable hashing involves additional complexity.

B + tree index files:

 The main disadvantage of the index sequential file organization is that

performance degrades as the file grows, both for index lookups and for sequential scans

through the data.

 The B+ tree index structure is the most widely used for several index

structures that maintain their efficiency despite insertion and deletion of data. A B+ tree

index structure takes a form of balanced tree in which every path from the root of the tree

to a leaf of the tree is of the same length. Each of non leaf node in the tree has between

[n/2] and n children where n is fixed for a particular tree.

Structure of a B+ - Tree:

 Typical node of B+ tree is shown below. It contains up to n-1 search key values

K1, K2…Kn-1 and n pointes P1, P2 ….Pn. the search key values within a node are kept in

sorted order.

P1 K1 P2 K2 …….. Pn-1 Kn-1 Pn

 The figure below shows leaf node of a B+ tree for an account file, in which we

have chosen n to be 3, and the search key is branch name. Since the account file is ordered

by branch name, the pointers in the leaf node points directly to the file.

 Each leaf can hold upto n-1 values. We allow leaf nodes to contain as few

as [(n-1)/2] values. The range of values in each leaf does not overlap. Thus if Li and Lj are

leaf nodes and i<j, then every search key value in Li is less than every search key value in

Lj. If a B+ index is to be a dense index, every search key value must appear in some leaf

node. Since there is a linear order on the leaves based on the search key values that they

CS 2255 – DATABASE MANAGEMENT SYSTEMS

158

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

contain, we use Pn to chain together the leaf nodes in search key order. This ordering allow

for efficient sequential processing of the file.

 The non-leaf nodes of the B+ tree form a multilevel (sparse index) on the

leaf nodes. A non-leaf node may hold upto n pointers, and must hold atleast [n/2] pointers.

The number of pointers in a node is called the fan-out of the node.

 The root node can hold fewer than [n/2] pointers. However it must hold

atleast two pointers, unless the tree consists of only one node. It is always possible to

construct a B+ tree for any n, that satisfies the preceding requirements. The fig below

shows a complete B+ tree for an account n=3.

 The fig below shows a B+ tree for n=5. These examples of B+ tree are all

balanced. That is the length of every path from the root to a leaf node is the same. This is a

requirement for a B+ tree that ensures good performance for lookup, insertion and deletion.

B trees index files:

 B tree indices are similar to B+ tree indices. The primary distinction between the

two approaches is that a B- tree eliminates the redundant storage of search key values. In

the B+ tree shown in the fig 12.8 , the search keys “downtown”, “Mianus”,

”Redwood” and “Perryridge” appear twice.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

159

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 A B-tree allows search key values to appear only once. Since search keys that

appear in non leaf nodes appear nowhere else in the B tree, we are forced to include an additional

pointer field for each search key in a non-leaf node. These additional pointers point to either file

records or buckets for the associated search-key. A generalized B-tree leaf node appears in the fig. a

non leaf node appears in the fig below.

 The number of nodes accessed in a lookup in a B tree depends on where the search

key is located. A lookup on the B+ tree requires traversal of a path from the root of the tree to some

leaf node. In contrast, it is sometimes possible to find the desired value in a B tree before reaching a

leaf node. The fact that fewer search keys appear in a non-leaf B tree node compared to B+ tree node

implies that the B- tree has a smaller fan-out and therefore may have depth greater than that of the

corresponding B+ tree. Thus lookup in a B-tree is faster for some search keys but slower for others.

Deletion in B-trees is more complicated. In a B+ tree, the deleted entry always appears in a

leaf. In a B+ tree, the deleted entry may appear in a non-leaf node. The proper value must be selected

as a replacement from the sub-tree of the node containing the deleted entry. Specifically if search

key Ki is deleted, the smallest search key appearing in the sub-tree of pointer Pi+1 must be removed

to the field formerly occupied by Ki. Further actions need to be taken if the leaf node now has too

few entries. In contrast, insertion in a B-tree is only slightly more complicated than is insertion in a

B+ tree.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

160

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Query Processing

Overview of Query Processing

 Query processing refers to the range of activities involved in extracting data from

a database.

 The activities include translation of queries in high-level database languages; into

expressions that can be used tat the physical level of the file system, a variety of

query – optimizing transformations, and actual evaluation of queries.

 The steps involved in processing a query appear in Fig 3.41

 The basic steps are:

1) Parsing and translation

2) Optimization

3) Evaluation.

 The first action, the system must take in query processing is to translate a given

query into its internal form. This translation process is similar to the work

performed by the parser of a compiler.

 In generating the internal form of the query, the parser checks the systax of the

user’s query, verifies that the relation names appearing in the query are names of

the relations in the database, and so on.

 The system constructs a parse – tree representation of the query, which it then

translates into a relational – algebra expression.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

161

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Furthermore, the relations – algebra representation of a query specifies only

partially how to evaluate a query.

 As a illustration, consider the query:

 Select balance

 From account

 Where balance < 2500

 This query can be translated into either of the following relational – algebra

expressions:

o Balance < 2500 (Π balance (account))

o Balance (σ balance < 2500 (account))

 To implement the preceding selection, we can search every tuple in account to

find tuples with balance less than 2500.

 If a B+ -tree index is available on the attribute balance, we can use the index

instead to locate the tuples.

 To specify fully how to evaluate a query, we need to provide not only the

relational – algebra expression, but also to annotate it with instructions specifying

how to evaluate each operation.

 A relational – algebra operation annotated with instructions on how to evaluate it

is called an evaluation primitive.

 A sequence of primitive operations that can be used to evaluate a query is a query

– execution plan or query – evaluation plan.

 Fig 3.42 illustrates an evaluation plan for our example query, in which a particular

index (denoted in the fig. as “index 1”) is specified for the selection operation.

 The query – execution engine takes a query – evaluation plan, executes that plan,

and returns the answers to the query.

 The different evaluation plans for a give query can have different costs.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

162

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Measures of Query Cost:

 The cost of query evaluation can be measured in terms of a number of different

resources, including disk accesses, CPU time to execute a query, and, in

distributed or parallel database system, the cost of communication.

 The response time for a query – evaluation plan (that is, the clock time required to

execute the plan) could be used as a good measure of the cost of the plan.

 In large database systems, however, disk accesses are usually the most important

cost, since disk accesses are slow compared to in – memory operations.

 Most people consider the disk – access cost a reasonable measure of the cost of a

query – evaluation plan.

 The number of block transfers from disk is also used as a measure of the actual

cost.

 We also need to distinguish between reads and writes of blocks, since it takes

more time to write a block to disk than to read a block from disk.

 For more accurate measure find out:

1) The number of seek operations performed,

2) The number of blocks read,

3) The number of blocks written,

And then add up these numbers after multiplying them by the average seek time, average

transfer time for reading a block, and average transfer time for writing a block,

respectively.

Selection Operation

 Consider a selection operation on a relation whose tuples are stored together in

one file.

 Two scan algorithms to implement the selection operation are given below.

Basic Algorithms

 A1 (linear search) : In a linear search, the system scans each file block and tests

all records to see whether they satisfy the selection condition. For a selection on a

key attribute, the system can terminate the scan if the required record is found,

without looking at the other records of the relation.

 The cost of linear search, in terms of number of I/O operations, is br , where br

denotes the number of blocks in the files. Selection on key attributes have an

average cost of br /2 but still have a worst – case cost of br.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

163

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Advantages:

 The linear search algorithms can be applied to any file.

Disadvantage:

 It is slower.

 A2 (binary search) : If the file is ordered on an attribute, and the selection

condition is an equality comparision on the attribute, we can use a binary search

to locate records that satisfy the selection.

 The system performs the binary search on the blocks of the file.

 The number of blocks that need to be examined to find a block containing the

required records is (log 2 (br)), where br, denotes the number of blocks in the file .

 If the selection is on a nonkey attribute, more than one block may contain

required records, and the cost of reading the extra blocks has to be added to the

cost estimate.

Selection using Indices

 Search algorithms that use an index are referred to as index scans.

 Search algorithms that use in index are:

 A3 (primary index, equality on key): For an equality comparision on a key

attribute with a primary index, we can use the index to retrieve a single record

that satisfies the corresponding equality condition.

 If a B+ -tree is used, the cost of the operation in terms of I/O operations, is

equal to the height of the tree plus one I/O to fetch the record.

 A4 (Primary index, equality on nonkey) : We can retrieve multiple records by

using a primary index when the selection condition specifies an equality

comparision on a nonkey attribute, A. The cost of the operation is proportional

to the height of the tree, plus the number of blocks containing records with the

specified search key.

 A5 (Secondary index, equality): Selection specifying an equality condition

can use a secondary index. This strategy can retrieve a single record if the

equality condition is on a key; multiple records may get retrieved if the

indexing field is not a key.

 In the first case, only one record is retrieved, and the cost is equal to the height

of the tree plus one I/O operation to fetch the record. In the second case, each

record may be resident on a different block, which may result in one I/O

operation per retrieved record.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

164

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Selections Involving Comparisions

 Consider a selection of the form σ A < v(Γ).

 We can implement the selection either by using a linear or binary search or by

using indices in one of the following ways:

 A6 (Primary index, comparison): A primary ordered index (for example, a

primary B+ - tree index) can be used when the selection condition is a

comparision.

 For comparison conditions of the form A>v or A> , a primary index on A can be

used to direct the retrival of tuples, as follows.

 For A>v, we look up the value v in the index to find the first tuple in the file that

has a value of A = v.

 A file scan starting from that tuple up to the end of the file returns all tuples that

satisfy the condition.

 For A > v, the file scan starts with the first tuple such that A>v.

 For comparisions of the form A < v or A <v, an index lookup is not required.

 For A < v, we use a simple file scan starting from the beginning of the file, and

continuing up to the first tuple with attribute A = v.

 The case A < v is similar, except the scan continues up to the first tuple with

attribute A>v.

 In either case index is not useful

 A7 (Secondary index, comparison) : We can use a secondary ordered index to

guide retrivel for comparision conditions involving <, <,>, or >.

 The lowest – level index blocks are scanned, either from the smallest value up to

v(for < and <), or from v up to the maximum va;ue (for > and >).

Implementation of complex selections

 We now consider more complex selection predicates.

 Conjunction: A conjuctive selection is a selection of the form

 Disjunction: A disjunctive selection is a selection of a form

 Negation : The result of selection σ θ® is the set of tuples of r for which the

condition θ evaluates to false.

 We can implement a selection operation involving either a conjunction or a

disjunction of simple conditions by using one of the following algorithms:

CS 2255 – DATABASE MANAGEMENT SYSTEMS

165

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 A8 (Conjunctive selection using one index) : We first determine whether an

access path is available for an attribute in one of the simple conditions.

 If one is, one of the selection algorithms A2 through A7 can retrieve records

satisfying that condition.

 A9 (Conjunctive selection using composite index). An appropriate composite

index (that is, an index on multiple attribute) may be available for some

conjunctive selections.

 If the selection specifies an equality condition on two or more attributes, and a

composite index exists on these combined attribute fields, then the index can

be searched directly. The type of index determines which of algorithms A3,

A4 or A5 will be used.

 A10 (Conjunctive selection by intersection of identifiers): Another alternative

for implementing conjunctive selection operations involves the use or record

pointers or record identifiers.

 This algorithm requires indices with record pointers, on the fields involved in

the individual conditions.

 The algorithm scans each index for pointers to tuples that satisfy an individual

condition. The interection of all the retrieved pointers is the set of pointers to

tuples that satisfy the conjunctive condition.

 The algorithm then uses the pointers to retrieve the actual records.

 The cost of algorithm A10 is the sum of the costs of the individual index

scans, plus the cost of retrieving the records in the interaction of the retrieved

lists of pointers.

 This cost can be reduced by sorting the list of pointers and retrieving records

in the sorted order. Thereby,

1) All pointers to records in a block come together, hence all selected records

in the block can be retrieved using a single I/O operation, and

2) Blocks are read in sorted order, minimizing disk arm movement.

 A11 (Disjunctive selection by union of identifiers) : If access path are

available on all the conditions of a dinjunctive selection, each index is

scanned for pointers to tuples that satisfy the individual condition. The union

of all the retrieved pointers yields the set of pointers to all tuples that satisfy

the disjunctive condition.

 We then use the pointers to retrieve the actual records.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

166

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 However, if even one of the conditions does not have an access path, we will

have to perform a linear scan of the relation to find tuples that satisfy the

condition.

Sorting

 We may build an index on the relation, and then use the index to read the relation

in sorted order. May lead to one disk block access for each tuple.

 For relations that fit in memory, techniques like quick sort can be used. For

relations that don’t fit in memory, external sort-merge is a good choice.

External Sort-Merge

Let M denotes the memory size

1. Create sorted runs

Let i be 0 initially

Repeatedly do the following till the end of the relations

a) Read M blocks of relation into memory

b) Sort the in memory blocks

c) Write sorted data to run Ri and increment i.

Let the final value of i be N.

2. Merge the runs(N-ways merge)

Assume that N<M

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output.

Read the first block of each run into its buffer page.

2. Repeat

i) Select the 1
st
 record among all buffer pages.

ii) Write the record to the output buffer. If the output buffer is full write it to

disk.

iii) Delete the record from its input buffer page

 If the buffer page becomes empty then read the next block(if any)of the run into the

buffer.

 3.Until all input buffer pages are empty.

>If, several merge passes are required.

a. In each pairs, contiguous groups of M-1 runs are merged.

b. A pass reduces the number of runs by a factor of M-1, and

creates runs longer by the same factor.

For eg, if M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10

times the size of the initial runs.Repeated passes are performed till all runs have been

merged into one.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

167

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Example:External sorting using sort-merge.

Join Operation

 In this section, we study several algorithms for computing the join of relations,

and we analyze their respective costs

 Consider the expression:

o Depositor customer

 We assume the following information about the two relations:

 Number of records of customer: n customer=10,000

 Number of blocks of customer : b customer = 400

 Number of records of depositor: n depositor = 5000

 Number of blocks of depositor: b depositor = 100

Nested – Loop Join

 This algorithm is called the nested – join algorithm, since it basically consists of

a pair of nested for loops.

 Relation r is called the outer relation and relation s is called inner relation of the

join

 The algorithm uses the notation tr.ts, where tr and ts are tuples; tr . ts denotes the

tuple constructed by concatenation the attribute values of tuples tr and ts.

 The nested – loop algorithm requires no indices.

 It is expensive, since it examines every pair of tuples in the two relation.

 Consider the cost of the nested – loop join algorithm. The number of pairs of

tuples to be consider is nr * ns, where nr, denotes the number of tuples in r,and ns

denotes the number of tuples in s. For each record in r, we have to perform a

complete scan on s.

 In the worst case, the buffer can hold only one block of each relation, and a total

of nr * bs + br block accesses would be required, where br and bs denote the

number of blocks containing tuples of r and s respectively.

 Now consider the natural join of depositor and customer.

 Assume that depositor is the outer relation and customer is the relation in the join.

 We will have to examine 5000 * 10000 = 50 * 10 6 pairs of tuples.

 In the worst case, the number of block accesses is 5000 * 400 + 100 = 2,000,100.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

168

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 In the best – case scenario, however, we can read both relations only once, and

perform the computation.

 This computation requires at most 100 + 400 = 500 block accesses.

For each tuple tr in r do begin

 For each tuple ts in s do begin

 Test pair(tr,ts) to see if they satisfy the join condition θ

 If they do, add tr.ts to the result

 End

End

Block Nested – Loop Join

 Block nested – loop join, which is a variant of the nested – loop join which every

block of the inner relation is paired with every block of the outer relation.

 Within each pair of block, every tuple in one block is paired with every tuple in

the other block, to generate all pairs of tuples.

 As before, all pairs of tuples that satisfy the join condition are added to the result.

For each block Br of r do begin

 For each block Bs of s do begin

 For each tuple tr in Br do begin

 For each tuple ts in Bs do begin

 Test pair (tr, ts) to see if they satisfy the join condition

 If they do, add tr . ts to the result

 End

 End

 End

 End

 The primary difference in cost between the block nested – loop join and the basic

nested – loop join is that, in the worst case, each block in the inner relation s is

read only once for each block in the outer relation, instead of ounce for each tuple

in the outer relation.

 Thus, in the worst case, there will be a total of br * bs + br block accesses, where

br and bs denote the number of blocks containing records of r and s respectively.

 In the worst case, we have to read each block of customer once for each block of

depositor

 Thus, in the worst case, a total of 100 * 400 +100=40,100 block accesses are

required.

 The number of block accesses in the best case remains the same namely, 100 +

400 = 500.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

169

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 The performance of the nested loop and block nested – loop procedures can be

further improved:

o If the join attributes in a natural join or an equi – join form a key on the

inner relation, then for each outer relation tuple the inner loop can

terminate as soon as the first match is found.

o If memory has M blocks, we read in M – 2 blocks of the outer relation at a

time, and when we read each block of the inner relation we join it with all

the M – 2 blocks of the outer relation. This change reduces the number of

scans of the inner relation from br to[br/ M -2) where br is the number of

blocks of the outer relation. The total cost is then [br (M-2)]*bs+br.

o Reuse the blocks stored buffer, which reduces the number of disk accesses

needed.

o If an index is available on the inner loop’s join attribute, we can replace

file scans with more efficient index lookups.

Indexed Nested - Loop Join

 In a nested – loop join, if an index is available on the inner loop’s join

attribute, index lookups can replace file scans.

 For each tuple tr in the outer relation r, the index is used to look up tuples

in s will satisfy the join condition with tuple tr.

 This join method is called an indexed nested – loop join; it can be used

with existing indices.

 For example, consider depositor customer.

 Suppose that we have a depositor tuple with customer – name “John”.

 Then the relevant tuples in s are those that satisfy the selection “customer

– name=John”

 The cost of an indexed nested – loop join can be computed as follows: for

each tuple in the outer relation r a lookup is performed on the index for s,

and the relevant tuples are retrieved.

 Then br disk accesses are needed to read relation r, where br denoted the

number of block containing records of r.

 For each tuple in r, we perform an index lookup on s.

 Then, the cost of the join can be computed as br+nr * c, where br is the

number of records in relation r, and c is the cost of a single selection on s

using the join condition.

 For example, consider an indexed nested-loop join of depositor customer ,

with depositor as the outer relation.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

170

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 Suppose also that customer has a primary B
+
-tree index on the join

attribute customer_name, which contains 20 entries on an average in each

index node.

 Since customer has 10,000 tuples, the height of the tree is 4, and one more

access in needed to find the actual data.

 Since n depositor is 5000, the total cost is 100 + 5000 *5=25,100 disk

accesses.

 This cost is lower than the 40,100 accesses needed for a block

nested – loop join.

Merge join

 The merge join algorithm (also called the sort – merge join algorithm) can be used

to compute natural join and equi-joins.

 Let r (R) and s (S) be the relations whose natural join is to be computed, and let R

S denote their common attributes.

Pr:=address of first tuple of r;

Pr:=address of first tuple of s;

While (ps =null and pr=null) do

Begin

 Ts:=tuple to which ps points;

 Ss:={ts};

 Set ps to point to net tuple of s;

 Done:=false

 While(not done and ps = null) do

 Begin

 Ts:=tuple to which ps points;

 If (ts[Join Attrs]=ts[Join Attrs])

 Then begin

 Ss:=Ss U {t`s};

 Set ps to point to next tuple of s;

 End

Else

 Done:=true;

End

tr:= tuple to which pr points;

while (pr null and tr[Join Attrs] < ts[Join Attrs]) do

begin

 set pr to point to next tuple of r;

 tr:=tuple to which pr points;

end

CS 2255 – DATABASE MANAGEMENT SYSTEMS

171

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

while(pr null and tr[Join Attrs]=ts[Join Attrs]) do

begin

 for each ts in Ss do

 begin

 add ts tr to result;

 end

set pr to point to next tuple of r;

tr:=tuple to which pr points;

end

end

Merge Join

 In the algorithm, Join Attrs refers to the attributes in R n S, and tr ts` where tr and

ts are tuples that have the same values for JoinAttrs, denotes the concatenation of

the attributes of the tuples, followed by projecting our repeated attributes.

 The merge join algorithm associates one pointer with each relation.

 These pointers point initially to the first tuple of the respective relation.

 As the algorithm proceeds, the pointer moves through the relation. A group of

tuples of one relation with the same value on the join attributes is read into Ss.

 The algorithm requires that every set of tuples Ss fit in memory.

 If the relations are in sorted order, the number of block accesses is equal to the

sum of the number of blocks in both files, br + bs`.

Hash Join

 The hash join algorithm can be used to implement natural joins and equi – joins.

 In the hash join algorithm, a hash function h is used to partition tuples of both

relations.

 The basic idea is to partition the tuples of each of the relations into sets that have

the same hash value on the join attributes

 We assume that

o It is a hash function mapping JoinAttrs values to {0,1,….nh}, where

JoinAttrs denotes the common attributes of r and s used in natural join.

o Hr, denote partitions of r tuples, each initially empty. Each tuple tr £ r is

put in partition, where i=h(tr[JoinAttrs]).

o Hs, denote partitions of s tuples, each initially empty. Each tuple ts s is put

in partition, where i=h(ts[JoinAttrs]).

 The idea behind the hash join algorithm is this: Suppose that a r tuple a s tuple

satisfy the join condition; then, they will have the same value for the join

attributes.

CS 2255 – DATABASE MANAGEMENT SYSTEMS

172

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

 If that value is hashed to some value i, the r tuple has to be in Hri and the s tuple in

Hsi.

 Therefore, r tuples in Hri need only to be compared with s tuples in Hsi; they do

not need to be compared with s tuples in any other partition.

 For example, if d is a tuple in depositor, c is a tuple in customer, and h is a hash

function on the customer-name attribute of the tuples, then d and c must be tested

only if h(c)= h(d), we must test c and d to see whether the values in their join

attributes are the same, since it is possible that c and d have different customer –

names that have the same hash value.

 Fig 3.46 shows the details of the hash join algorithm to compute the natural join

of relations r and s.

/* Partition s */

For each tuple ts in s do begin

I:= h(ts [JoinAttrs])

His:= His U {ts};

End

/* Partition r* /

For each tuple tr in r do begin

 I:= h(tr[JoinAttrs])

 Hri:=HRi U {tr};

End

/* Perform join on each partition */

For i=0 to nn do begin

 Read H si and build an in – memory hash index on it

 For each tuple tr in Hri do begin

 Probe the hash index on H si to locate all tuples ts

 Such that ts [JoinAttrs] = tr [JoinAttrs]

 For each matching tuple t s in H si do begin

 Add tr ts to the result

 End

 End

End.

Database tuning

 It describes a group of activities used to optimize and homogenize the performance of a

database. It usually overlaps with query tuning, but refers to design of the database files,

selection of the database management system (DBMS), operating system and CPU the DBMS

runs on.

 The goal is to maximize use of system resources to perform work as efficiently and rapidly as

possible. Most systems are designed to manage work efficiently, but it is possible to greatly

improve performance by customizing settings and the configuration for the database and the

DBMS being tuned.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/CPU

CS 2255 – DATABASE MANAGEMENT SYSTEMS

173

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

I/O tuning

 I/O tuning is placing database transaction logs, files associated with temporary work spaces,

and table and index file storage to optimize and balance reads and writes against these files. I/O

is generally the most expensive operation in database work, and is typically the first bottleneck

in database performance encountered.

 Hardware and software configuration of disk subsystems are examined: RAID levels and

configuration, block and stripe size allocation, and the configuration of disks, controller cards,

storage cabinets, and external storage systems such as a SAN. Transaction logs and temporary

spaces are heavy consumers of I/O, and affect performance for all users of the database.

Placing them appropriately is crucial.

 Frequently joined tables and indexes are placed so that as they are requested from file storage,

they can be retrieved in parallel from separate disks simultaneously. Frequently accessed tables

and indexes are placed on separate disks to balance I/O and prevent read queuing.

DBMS tuning

 DBMS tuning refers to tuning of the DBMS and the configuration of the memory and

processing resources of the computer running the DBMS. This is typically done through

configuring the DBMS, but the resources involved are shared with the host system.

 Tuning the DBMS can involve setting the recovery interval (time needed to restore the state of

data to a particular point in time), assigning parallelism (the breaking up of work from a single

query into tasks assigned to different processing resources), and network protocols used to

communicate with database consumers.

 Memory is allocated for data, execution plans, procedure cache, and work space. It is much

faster to access data in memory than data on storage, so maintaining a sizable cache of data

makes activities perform faster.

 The same consideration is given to work space. Caching execution plans and procedures

means that they are reused instead of recompiled when needed. It is important to take as much

memory as possible, while leaving enough for other processes and the OS to use without

excessive paging of memory to storage.

 Processing resources are sometimes assigned to specific activities to improve concurrency. On

a server with eight processors, six could be reserved for the DBMS to maximize available

processing resources for the database.

http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Redundant_array_of_independent_disks
http://en.wikipedia.org/wiki/Block_storage
http://en.wikipedia.org/wiki/Expansion_card
http://en.wikipedia.org/wiki/Storage_area_network
http://en.wikipedia.org/wiki/Join_(SQL)
http://en.wikipedia.org/wiki/Host_system
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Server_(computing)

CS 2255 – DATABASE MANAGEMENT SYSTEMS

174

II YEAR/ IV SEM DEPARTMENT OF CSE & IT

Question Bank

2 MARK QUESTIONS

1. Differentiate between Volatile and Non Volatile Storage.

2. Define Disk Pack.

3. Define the terms Seek Time and Latency.

4. What is ordering key?

5. When the Overflow of file occurs?

6. What is the difference between file organization and Access Methods?

7. Discuss the Mechanism used for read the data from or write the data to disk.

8. What are the differences between Static File and Dynamic File?

9. What is the use of Mixed File?

10. What is the Technique used for allowing a Hash file to expand and Shrink

11. Dynamically?

12. Why are the Disks, tapes used to store for Online- Database Files?

13. Define the term INTERBLOCK GAP?

14. How does the Mirroring Helps in improving Reliability?

15. Define Internal and External Hashing with an Examples?

16. Define the term BLOCK ANCHOR & DENSE INDEX?

17. Define the following terms:

(a) Indexing Field,

(b) Primary key

(c) Clustering field

18. How does the Multilevel Indexing improve the Efficiency of searching an index

19. File?

20. How a B-Tree does differs from W Tree? Explain it.

21. Describe the structure of B-Tree.

22. Describe the structure of B+-Tree.

23. What are the differences between primary/secondary/clustering indexes?

24. What is measures of the quality of a disk?

25. What are the 2 types of ordered indices?

16 MARK QUESTIONS

1. Describe about RAID levels.

2. Describe the structure of B+-tree and give the algorithm for search in the B+-tree

3. with example.

4. Explain the comparison between ordered indexing and hashing.

5. Explain in brief about query processing.

6. Compare and contrast B+- and B--tree. Explain it with neat sketch.

7. List the secondary storages devices. Explain each in detail.

8. Explain the index structure for files and its types in detail.

9. Explain different hashing methods in detail.

10. List the various types of indices. Explain each in detail.

11. Explain different file organizations.

	12188
	12193
	12197
	12201
	12210
	12211
	12212
	12213
	15767
	15768
	15772
	15774
	12246
	14770
	12315
	12319
	12321
	12325
	top
	Media_recovery_commands
	RECOVER_DATABASE
	RECOVER_TABLESPACE
	RECOVER_DATAFILE
	Media_recovery_types
	Performing_Closed_Database_Recovery
	Performing_Open-Database.2C_Offline-Tabl
	AEN11315
	AEN11321
	AEN11327
	MVCC-ISOLEVEL-TABLE
	XACT-READ-COMMITTED
	AEN11371
	XACT-SERIALIZABLE
	AEN11395

