

CS/B.Optm/SEM-1/BO-101/2011-12 2011 GEOMETRICAL OPTICS (OPTICS - I)

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Guestions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) Number of images formed by two plane mirrors inclined at 60° is
a) 3
b) 6
c) 5
d) 7 .
ii) If a thin prism of refractive index 1.5 and having an angle of 6° is made to deviate light then deviation produced by it is approximately
a) 1°
b) 3°
c) 2°
d) 4°.
iii) Vergence V is defined as
a) $\quad V=2 R$
b) $\quad V=R$
c) $\quad V=3 R$
d) none of these.

CS /B.Optm/SEM-1/BO-101/2011-12
iv) When thin convex lens is put in contact with a thin concave lens of same focal length, the resultant combination has a focal length equal to
a) $f / 2$
b) $2 f$
c) 0
d) none of these.
v) A well cut diamond appears bright because
a) it emits light
b) it is radioactive
c) scattering of light
d) total internal reflection of light.
vi) During refraction of light which of the following remains unchanged?
a) Frequency
b) Speed
c) Wavelength
d) Intensity.
vii) Total internal reflection occurs when light travels from
a) rarer to denser medium
b) denser to rarer medium
c) both (a) \& (b)
d) none of these.
viii) If f_{1} and f_{2} represent the first and second focal lengths of a single spherical refracting surface, then
a) $f_{2}=-f_{1}$
b) $f_{2}=-\mu f_{1}$
c) $\quad f_{1}=-\mu f_{2}$
d) $\quad f_{1} f_{2}=-1$.
ix) Optical fibre works on the principle of
a) refraction
b) total internal reflection
c) reflection
d) none of these.
x) If two thin lenses of powers P_{1} and contact then equivalent power is
a) $\quad P_{1} \times P_{2}$
b) $\quad P_{1}-P_{2}$
c) $\quad P_{1}+P_{2}$
d) none of these.

GROUP - B

(Short Answer Type Questions)

Write short notes on any three of the following.

$$
3 \times 5=15
$$

2. Vergence.
3. Astigmatism.
4. Dispersion of light.
5. Critical angle and total internal reflection.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
6. a) State the factors affecting the angle of deviation of a prism.
b) Prove that for a small angle prism $\delta=A(\mu-1)$, when angle of incidence is very small.
c) Establish the relationship between dispersive power, angular dispersion and mean deviation of a prism.
d) The minimum deviation produced by a hollow prism filled with a certain liquid is found to be 30°. The refractive angle of the prism is 60°. Calculate the RI of the liquid.

$$
4+4+4+3
$$

CS/B.Optm/SEM-1/BO-101/2011-12
7. a) Two thin lenses of focal lengths f_{1} and f_{2} are kept in contact. Find the focal length and power of the combination.
b) What is aberration? What is spherical aberration? How can we minimize spherical aberration ?
c) A biconvex lens with both faces of the same radius of curvature to be manufactured from a glass of refractive index 1.55 . What should be the radius of curvature for the focal length of the lens to be 20 cm ? $5+6+4$
8. a) Find the lateral shift by a plane parallel glass plate of thickness t and refractive index μ.
b) What is dispersion of light?
c) A ray of light falling at an angle of 45° with the surface of a clean slab of ice of thickness 1 m is refracted into it an angle of 30°. Calculate the time taken by the light rays to cross the slab. Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$. $8+2+5$
9. a) What is optical fibre ? Describe the different types of optical fibre and state its uses.
b) An optical fibre is placed in air of which the refractive indices of core and cladding are 1.5 and $1 \cdot 47$. Find acceptance angle and numerical aperture.
c) Explain cardinal points for thick lens system with ray diagram.
$5+5+5$

