RTS	– V –	11	11	0026
DID	- v -	11.	14	0920

Reg. No.	
----------	--

B. Tech. Degree V Semester Examination November 2014

EE 1506 FIELD THEORY

(2012 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A

(Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) State and prove divergence theorem.
 - (b) State and prove Stoke's theorem.
 - (c) State and explain Maxwell's equations in differential and integral forms.
 - (d) Explain magnetic scalar and vector potential.
 - (e) What is skin depth? Obtain an expression for skin depth.
 - (f) State and prove Poynting theorem.
 - (g) State and prove Snell's law of refraction.
 - (h) Derive the expression for input impedance of a transmission line terminated in its load impedance.

PART B

 $(4 \times 15 = 60)$

- II. (a) Convert the following vector to Cartesian coordinates. $A = \sin \theta \ ar / r^2 + \cos \theta \ a\theta / r^2$
 - (b) A cylindrical capacitor has radii a = 1cm and b = 2.5cm. If the space between the plates is filled with an inhomogeneous dielectric with $\varepsilon_r = (10 + \rho)/\rho$, where ρ is in cm, find the capacitance per meter of the capacitor.

OR

- III. (a) Transform the vector $A = 2 a_x + 5 a_y$ at the point P(x = 2, y = 1, z = 3) into cylindrical coordinate system.
 - (b) To point charges $-4 \mu C$ and $5 \mu C$ are located at (2m, -1m, 3m) and (0, 4m, -2m) respectively. If the potential at (0, 1m, 2m) is 5V, determine the potential at (1m, 1m, 0).
- IV. (a) State Ampere's law. Derive the expression for magnetic field intensity at any point around an infinite filamentary line current using Ampere's law.
 - (b) A wire carrying 100A current is bent into a square of side 10cm. Calculate the field at the centre of the coil.

OR

- V. (a) Derive the boundary conditions for magnetic fields at the dielectric interface.
 - (b) A circular loop located on $x^2 + y^2 = 9$, z = 0 carries a direct current of 10A along a_{ϕ} . Determine H at (0,0,4) and (0,0,-4).

- VI. (a) What are standing waves? Explain how they are formed along a transmission line.
 - (b) Derive the expressions for the electric and magnetic field components of a uniform plane wave propagating in a lossy dielectric.

OR

- VII. (a) What is intrinsic impedance? Obtain the intrinsic impedance of free space.
 - (b) In free space $(z \le 0)$, a plane wave with $H = 10 \cos \left(10^8 t \beta z\right) a_x mA/m$ is incident normally on a lossless medium with $\varepsilon = 2_{\varepsilon_0}$ and $\mu = 8\mu_0$. If the lossless medium lies in region $(z \ge 0)$, determine the reflected and transmitted components of electric and magnetic fields associated with the wave.
- VIII. (a) Derive the expressions for reflection coefficient and transmission coefficient for a normally incident wave at a dielectric interface.
 - (b) A wave is incident at an angle of 30 degrees from air to teflon with $\varepsilon_r = 2.1$. Calculate the angle of transmission.

OR

- IX. (a) Derive the wave equations for voltages and currents for a transmission line.
 - (b) A transmission line of $Zo = 50\Omega$ is terminated by $Z_L = R_L = 100\Omega$. Find VSWR, Zmin and Zmax.
