Code No.: 5007/M

FACULTY OF ENGINEERING & INFORMATICS

B.E. I Year (Common to all branches) Examination, May/June 2012

ENGINEERING MECHANICS

Time: 3 Hours]

[Max. Marks: 75

Answer **all** questions from Part-A. Answer any **five** questions from Part-B.

Part A — (Marks : 25)		
1.	State the law of transmisibility	2
2.	What is a free body diagram?	2
3.	Differentiate centroid and centre of gravity?	2
4.	Define various laws of friction?	3
5.	State parallel axis theorem.	3
6.	Differentiate rectilinear motion and curvilinear motion?	3
7.	State D' Alemberts principle	3
8.	A block of weight 35N is placed on a smooth inclined plane which makes 45° w horizontal. Calculate the work done when the block is pulled by $5m$?	ith 3
9.	Differentiate direct impact and oblique impact?	2
10.	What is co-efficient of restitution?	2

Parrt B — (Marks: 50)

11. (a) Determine the resultant of the concurrent forces shown in the figure.

(b) Find the least value of force *P* required to overcome an obstacle 50mm high to a roller weighing 10kN and 100mm radius. Also find the reaction at the block?

12. Determine the centroid of the surface of a right circular cone of attitude *h*?

13. Determine the least value of the force P to cause motion to impend rightwards. Assume the co-efficient of friction under the blocks to be 0.2 and the pulley to be frictionless.

5

5

10

14. Find the M.I. of the section shown below about centroidal axis xx perpendicular to the web.

- 15. (a) Motion of a particle is given by $x = t^3 3t^2 9t + 12$. Determine time position and acceleration of the particle when its velocity becomes zero?
 - (b) A bullet of mass 90g and moving with a velocity of 310 m/sec is fired into a log of wood and it penetrates to a depth of 10cm. If the bullet moving with the same velocity were fired into a similar piece of wood 6 cm thick, with what velocity would it merge. Find also the force of resistance assuming it to be uniform?
- 16. Find the velocities of blocks, if block B shown in fig. falls vertically at a distance of 2m.

17. If m_1 ansd m_2 are the masses of two bodies u_1 , u_2 and v_1 , v_2 are the velocities of the bodies before and after impact. Show that the loss of kinetic energy due to central

impact is
$$\frac{m_1 m_2}{2(m_1 + m_2)} [(u_1 - u_2)^2 (i - e^2)].$$
 10