$\mathbf{R07}$

Set No. 2

IV B.Tech I Semester Examinations,December 2011 INDUSTRIAL AERODYNAMICS Aeronautical Engineering

Time: 3 hours

against.

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks * * * * *

1. Why is wind energy classified as secondary? Explain and justify or give your reasons

2.	Explain about the general flow pattern of effluents. Discuss the importance of velocity ratio with neat sketches. [16]
3.	Explain the effects of environmental winds in city blocks in brief. [16]
4.	Does a racing car require a horizontal stabilizer? Explain, starting from the defini- tion of stability in pitching motion of the car. [16]
5.	Prove that in case of horizontal axis wind turbine maximum power can be obtained when The exit velocity is = $(1/3)$ wind velocity and $P_{max} = (8/27) \rho A V^3$ Explain all the parameters clearly. [16]
6.	Define flutter. Explain about wake flutter and fluxural torsion flutter. [16]
7.	 (a) Derive the relationship between the torque coefficient C_T and tip speed ratio l. (b) A wind mill has a tip speed ratio of 6. What is the torque coefficient? [8+8]
	(b) A wind mill has a tip speed ratio of 6. What is the torque coefficient? $[8+8]$
8.	From the following parameters $\mu_r = 0.015$ Mass of the car = 1251Kg Silhouette area of the car A=1.77m ² Cd of a car = 0.38.
	(a) Calculate the resistant force of rolling friction? $\rho = 1.2 \text{Kg/m}^3$
	(b) Calculate air resistance force for different speeds and calculate the power required. $V_1=36$ kmph $V_2=54$ kmph
	$V_2 = 0.4 \text{ kmph}$ [16]

 $\mathbf{R07}$

Set No. 4

IV B.Tech I Semester Examinations, December 2011 INDUSTRIAL AERODYNAMICS Aeronautical Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define:
 - i. Fraude number
 - ii. Strouhal number
 - [16](b) Discuss about vortex induced vibrations.
- 2. Discuss about vertical velocity and inversions in the study of design of chimney with neat sketches. [16]
- 3. What is down force? What is the importance of it in a racing car? What are the design changes that are required to increase the down force? [16]
- 4. (a) Define the coefficient of performance for a wind mill.
 - (b) Define tip speed ratio (TSR).
 - (c) Show graphically the variation of variation of power coefficient $(K_p \text{ or } C_p)$ with tip speed for various TSR for different types of wind mills.
 - (d) What is your conclusion from this graph? [4+4+4+4]
- 5. How are WEC (Wind Energy Conversion) Systems classified? Discuss in brief.[16]
- 6. Draw the sketches of
 - (a) a passenger car which is nearly a square and
 - (b) a modern piston engine racing car of high speed. Explain how they are affected by still air and wind. [16]
- 7. The speed of wind at an altitude of 50 m is 30 m/s. Show graphically, with numbers, the variation of wind from ground to this altitude. Explain the causes for the nature of the curve. [16]
- 8. What are the special problems of tail buildings discuss in brief. [16]

 $\mathbf{R07}$

Set No. 1

IV B.Tech I Semester Examinations, December 2011 INDUSTRIAL AERODYNAMICS Aeronautical Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- [16]1. What is a pressure pulse? What is its effect on a passing train?
- 2. Is there difference between air and wind? If so, what is it? How is the air affected by a racing car? How is the racing car affected by the air? Explain with proper justification. [16]
- 3. What are the bases on which wind is classified? Explain with details. [16]
- 4. (a) Explain about interference effect of buildings.
 - (b) What are the building codes? Discuss. [16]
- (a) Draw a sketch of a simple aero-generator and explain the components. 5.
 - (b) Explain the various controls for the aero-generator. [8+8]
- 6. Wind at 1 standard atmospheric pressure and 15 degree Celsius temperature has a velocity of 10 m/s. The turbine has a diameter of 120 m and its operating speed is 40 rpm at maximum efficiency. Calculate
 - (a) The total power density in the wind stream,
 - (b) The maximum obtainable power density assuming h = 40 %
 - (c) The total power produced in kilo Watts,
 - (d) The torque and axial thrust. [4+4+4+4]
- 7. What is a flume rise and discuss the different types of flume rise. [16]
- 8. Discuss about separation and reattachment and what are the four variables that effects it discuss. [16]

 $\mathbf{R07}$

Set No. 3

IV B.Tech I Semester Examinations,December 2011 INDUSTRIAL AERODYNAMICS Aeronautical Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1. Explain in brief about train aerodynamics stability in high winds?	[16]
2. What are the types of energy is wind energy converted into? Explain with	th details. [16]
3. What are the different types of winds? Explain clearly.	[16]
4. What are the advantages of vertical axis machines over the horizontal to scribe a rotor for a relatively low velocity wind.	ype? De- [16]
5. What is a chimney and explain about the various design parameters that flow pattern in a chimney.	effect the [16]
6. (a) Describe the aerodynamic forces on a wind turbine (wind mill) blade all the variables used.	e. Explain
(b) What is the shape you recommend for the blade and why?	[8+8]
7. Discuss about the various design parameters that have to be considered building. Illustrate.	for a tail [16]
8. Define galloping and discuss various types of galloping.	[16]