

Code No. : 5205/S

FACULTY OF ENGINEERING B.E. 4/4 (Mech./Prod.) I Semester (Suppl.) Examination, July 2012 FINITE ELEMENT ANALYSIS

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

	PART-A	(25 Marks)
1.	Write the compatibility conditions.	2
2.	What are quadratic shape functions?	3
3.	Write the stiffness matrix for a frame element.	3
4.	Write the Jacobian for 3-noded triangular and 4-noded quadrilateral elem	ents. 3
5.	Write the 'D' matrix for a axisymmetric element.	2
6.	What are thermal boundary conditions?	2
7.	What is eigen value and eigen vector? Explain their significance.	3
8.	Write the stiffness matrix of circular shaft subjected to torsion.	3
9.	Determine heat capacitance matrix for ID conduction element.	2
10.	Sketch 3D elements tetrahedron and brick elements.	2
(Thi	s paper contains 3 pages) 1	Р.Т.О.

Code No.: 5205/S

PART-B

(50 Marks)

10

11. For tapered bar shown in Fig. 1, at '1-1' and '2-2' the area of cross section is 10^{-6} m² and 10^{-4} m². Find the deflection at node 2 and element stresses if E = 200 GPa.

- 12. For the truss shown in Fig. 2 find the
 - i) The deflection at node 2
 - ii) The strains and stresses in each member.

if E = 200 GPa,
$$A = 10^{-6} \text{m}^2$$
.

10

Fig. 2

- 13. Write the shape functions for
 - a) i) 2-noded beam element

4

- ii) 3-noded triangular element
- b) Derive the stiffness matrix for 2 noded bar Element.

6

Code No.: 5205/S

- 14. a) Write the Jacobian Matrix for
 - i) 3-noded axisymmetric element

4

- ii) 4-noded quadrilateral element
- b) Derive the stiffness matrix for truss element.

6

15. For the composite wall shown in Fig. 3, determine the temperature variation if

$$K_1 = 2K_2 = \frac{K_3}{2} = 50 \text{ W/m C}^\circ$$

10

16. For the cantilever beam shown in Fig. 4, Determine the natural frequencies and corresponding mode shapes if E = 200 GPa, ρ = 7800 kg/m³.

10

17. Write the following

10

- a) Integrate numerically $I_z = \int_{-1}^{1} (3z^2 6z + 5) dz$ and compare the solution with Gaussian quadrater (n = 1, $w_1 = 2$, $z_1 = z_2 = 0$, n = 2, $w_1 = w_2 = 1$, $z_1 = z_2 = \mp 0.577$).
- b) Write conduction and connection matrices for plate with triangular elements.