I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Derive the normal equation to fit the parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{c} x^{2}$.
(b) By the method of least square, find the straight line that best fits the following data:

x	1	2	3	4	5
y	14	27	40	55	68

2. (a) Find the Fourier Series to represent the function $\mathrm{f}(\mathrm{x})=|\sin x|$ in $-\Pi<x<\Pi$
(b) Find the Fourier Series for the function $f(x)$ is given by

$$
f(x)=\left\{\begin{array}{cl}
-\frac{1}{2}(\Pi+x) & \text { for }-\Pi<x \leq 0 \tag{7+8}\\
\frac{1}{2}(\Pi-x) & \text { for } 0 \leq x<\Pi
\end{array} .\right.
$$

3. Find the eigen values and the corresponding eigen vectors of $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
4. (a) Given $\frac{d y}{d x}=x y$ and $y(0)=1$ find $y(0.1)$ using Euler's method.
(b) solve by Euler's method $\frac{d y}{d x}=\frac{2 y}{x}$ given $\mathrm{y}(1)=2$ and find $\mathrm{y}(2)$.
5. (a) Solve $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$.
(b) Solve $x^{2} p^{2}+x p q=z^{2}$.
6. Reduce the quadratic form to the canonical form $6 x^{2}+3 y^{2}+3 z^{2}-4 \mathrm{xy}+4 \mathrm{zx}-2 \mathrm{yz}$.
7. (a) Reduce the Matrix A to its normal formWhere $\mathrm{A}=\left[\begin{array}{cccc}1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6\end{array}\right]$ and hence find the rank.
(b) Find whether the following system of equations are consistent. If so solve them.
8. (a) Establish the formula $x_{i+1}=\frac{1}{2}\left(x_{i}+\frac{N}{x_{i}}\right)$ and hence compute the value of upto four decimal places.
(b) Find $y(25)$ given that $y(20)=24, y(24)=32, y(28)=35, y(32)=40$ using Gauss forward difference formula.
[8+7]

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE Time: 3 hours

Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. Find the eigen values and the corresponding eigen vectors of $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
2. Reduce the quadratic form to the canonical form $3 x^{2}-3 y^{2}-5 z^{2}-2 \mathrm{xy}-6 \mathrm{yz}-6 \mathrm{xz} .[15]$
3. (a) From the following table, find the value of x for which y is maximum and find this value of y.

x	1.2	1.3	1.4	1.5	1.6
y	0.9320	0.9636	0.9855	0.9975	0.9996

(b) From the following table find x , correct to four decimal places for which y is minimum and find this value of y.

x	0.60	0.65	0.70	0.75
y	0.6221	0.6155	0.6138	0.6170

4. (a) Solve $p x+q y=p q$.
(b) Solve $z^{2}=$ pqxy.
5. Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using Euler's modified formula given that $\frac{d y}{d x}=x^{2}-\mathrm{y}$ and $y(0)=1$.
6. If $\mathrm{f}(\mathrm{x})=x$ for $0<x<\Pi / 2$. for $\Pi / 2<x<\Pi$. then prove that
(a) $\mathrm{f}(\mathrm{x})=\frac{4}{\Pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x---\right]$.
(b) $f(x)=\frac{\Pi}{4}-\frac{2}{\Pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+--\right]$.
7. (a) Find a real root of the equation, $\log \mathrm{x}=\cos \mathrm{x}$ using regula falsi method.
(b) Given that $\mathrm{f}(20)=24, \mathrm{f}(24)=32, \mathrm{f}(28)=35, \mathrm{f}(32)=40$, find $\mathrm{f}(25)$ using Gauss forward interpolation formula.
8. a) Find the Value of k it the Rank of Matrix A is 2 were $\mathrm{A}=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0\end{array}\right]$
(b) Determine whether the following equations will have a solution, if so solve them. $\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=2,3 \mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}=1,4 \mathrm{x}_{1}-3 \mathrm{x}_{2}-\mathrm{x}_{3}=3,2 \mathrm{x}_{1}+4 \mathrm{x}_{2}$ $+2 \mathrm{x}_{3}=4$.

$$
[7+8]
$$

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Reduce the quadratic form to the canonical form $2 x^{2}+5 y^{2}+3 z^{2}+4 \mathrm{xy}$.
2. (a) Find the Values of Rank of the Matrix ,by reducing it to the normal form.
$\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 5 & 6\end{array}\right]$
(b) Find the valves of p and q so that the equations $2 x+3 y+5 z=9,7 x+3 y$ $2 \mathrm{z}=8,2 \mathrm{x}+3 \mathrm{y}+\mathrm{pz}=\mathrm{q}$ have
i. No solution
ii. Unique solution
iii. An infinite number of solutions.
3. Find $\mathrm{y}(0.1), \mathrm{z}(0.1)$ given $\frac{d y}{d x}=\mathrm{z}-\mathrm{x}, \frac{d z}{d x}=\mathrm{x}+\mathrm{y}$ and $\mathrm{y}(0)=1, \mathrm{z}(0)=1$ by using taylor's series method.
4. (a) Express $f(x)=x^{3}$ as Fourier sine series in $(0, \Pi)$.
(b) find the Fourier sine series of $e^{a x}$ in $(0, \Pi)$.
5. (a) Derive a formula to find the cube root of N using Newton Raphson method hence find the cube root of 15 .
(b) Find the interpolation polynomial for $\mathrm{x}, 2.4,3.2,4.0,4.8,5.6, \mathrm{f}(\mathrm{x})=22,17.8$, 14.2, 38.3, 51.7 using Newton's forward interpolation formula.
6. (a) Prove that if the eigen values of a nonsingular square matrix are $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots . \lambda_{n}$, then the eigen values of $\mathrm{A}-\mathrm{KI}$ are $\lambda_{1}-K, \lambda_{2}-K, \lambda_{3}-K \ldots ., \lambda_{n}-K$.
(b) Find the eigen values and the corresponding eigen vectors of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
7. (a) Solve $\mathrm{z}\left(p^{2}-q^{2}\right)=x-y$.
(b) Solve $p^{2} z^{2} \sin ^{2} x+q^{2} z^{2} \cos ^{2} y=1$.
8. (a) Use the trapezoidal rule with $\mathrm{n}=4$ to estimate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ correct to four decimal places.
(b) Evaluate $\int_{0}^{\pi}\left(\frac{\sin x}{x}\right) d x$ by using
i. Trapezoidal rule.
ii. Simpson's $\frac{1}{3}$ rule taking $n=6$.

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE Time: 3 hours

Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. By the method of least squares, fit a second parabola $y=a+b x+c x^{2}$ to the following data:

x	2	4	6	8	10
y	3.07	12.85	31.47	57.38	91.29

2. (a) Find a real root of the equation $e^{x} \operatorname{Sin} x=1$, using regula falsi method.
(b) Find $\mathrm{f}(22)$, from the following data using Newton's Backward formula.

x	20	25	30	35	40	45
y	354	332	291	260	231	204

3. (a) $\mathrm{f}(\mathrm{x})=\mathrm{x}-\Pi$ as Fourier series in the interval $-\Pi<x<\Pi$.
(b) Find the fourier series to represent $\mathrm{f}(\mathrm{x})=x^{2}$ in $(0,2 \Pi)$. $[8+7]$
4. (a) Find the Rank of the Matrix , by reducing it to the normal form. $\left[\begin{array}{rrrr}1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6\end{array}\right]$
(b) Find whether the following system of equations are consistent. If so solve them. $x+2 y-z=3,3 x-y+2 z=-1,2 x-2 y+3 z=2, x-y+z=-1$.
$[8+7]$
5. Find $\mathrm{y}(0.5), \mathrm{y}(1)$ and $\mathrm{y}(1.5)$ given that $\frac{d y}{d x}=4-2 \mathrm{x}$ and $\mathrm{y}(0)=2$ with $\mathrm{h}=0.5$ using modified Euler's method.
[15]
6. Verify Cayley Hamilton theorem and find the inverse of $\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$.
7. (a) Solve $p-x^{2}=q+y^{2}$.
(b) Solve $q^{2}-p=y-x$.
(c) Solve $q=p x+p^{2}$.
8. Compute the full SVD for the following matrix $\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3\end{array}\right]$.
