
OOPS Study Material UNIT-5

Object Oriented Programming (Anna University)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university

OOPS Study Material UNIT-5

Object Oriented Programming (Anna University)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university
Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5
https://www.studocu.com/in/document/anna-university/object-oriented-programming/oops-study-material-unit-5/43844556?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5
https://www.studocu.com/in/course/anna-university/object-oriented-programming/5904921?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5
https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5
https://www.studocu.com/in/document/anna-university/object-oriented-programming/oops-study-material-unit-5/43844556?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5
https://www.studocu.com/in/course/anna-university/object-oriented-programming/5904921?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS
JAVAFX Events and Controls: Event Basics – Handling Key and Mouse Events. Controls: Checkbox,
ToggleButton – RadioButtons – ListView – ComboBox – ChoiceBox – Text Controls – ScrollPane.
Layouts – FlowPane – HBox and VBox – BorderPane – StackPane – GridPane. Menus – Basics – Menu
– Menu bars – MenuItem.

BASICS OF EVENT HANDLING
Definition: Event
Changing the state of an object is known as an event. i.e. event describes the change in state of source.
Events are generated as result of user interaction with the graphical user interface components. For
example, clicking on a button, moving the mouse, entering a character through keyboard, selecting an
item from list, scrolling the page are the activities that causes an event to happen.
What is Event Handling?
Event Handling is the mechanism that controls the event and decides what should happen if an event

occurs. This mechanism has the code which is known as event handler that is executed when an event

occurs.
Events are included in the following packages:
1) java.util
2) java.awt
3) java.awt.event

DELEGATION EVENT MODEL
Delegation Event Model is the modern approach to handle the event. It defines the standard and consistent
mechanism to generate and process events.
Concept:
A source generates an event and sends it to one or more listeners.
Listener simply waits until it receives an event.
Once received, the listener processes the event and then returns.
User interface element is able to "delegate" the processing of an event to a separate piece of code.
Notifications are sent only to those listeners that want to receive them.

 The Delegation Event Model is based on the concept of “Event source” and “Event Listeners”
 Any object that is interested in receiving messages (or events) is called an Event Listener.
 Any object that generates the messages (or Events) is called an Event Source.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

COMPONENTS OF DELEGATION EVENT MODEL:
There are three major components in the delegation event model:
1. Events
2. Event Sources
3. Event Listeners
1. Events
An event is an object that describes a state change in a source. Some of the activities that cause events to
be generated are pressing a button, entering a character via the keyboard, selecting an item in a list, and
clicking the mouse.
2. Event Sources
A Event Source is an object that generates an event. Sources may generate more than one type of event.
A source must register listeners in order for the listeners to receive notifications about a specific type of
event.
3. Event Listeners
Listener is an object that is notified when an event occurs. It has two major requirements:
1. It must have been registered with one or more sources to receive notifications about specific types of
events.
2. It must implement methods to receive and process these notifications.

The package java.awt.event defines several types of events that are generated by various user interface
elements.
WORKING OF EVENT HANDLING
The following steps give an overview of how event handling in the AWT works:
1. A listener object is an instance of a class that implements a special interface called (naturally enough)
a listener interface.
2. An event source is an object that can register listener objects and send them event objects.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

3. The event source sends out event objects to all registered listeners when that event occurs.
4. The listener objects will then use the information in the event object to determine their reaction to the
event.

You register the listener object with the source object by using lines of code that follow the model:
eventSourceObject.addEventListener(eventListenerObject);
Example:
Button b1=new Button(―OK‖);
B1.addActionListener(this);
The listener object is notified whenever an ―action event‖ occurs on the button (when the button is
clicked).
The below figure explains the working of Delegation Event Model:

Advantages of Event Delegation Model:
1. In event delegation model, the events are handled using objects. This allows a clear separation between
the usage of the components and the design.
2. It accelerates the performance of the application in which multiple events are used.

AWT EVENT HIERARCHY

 Event handling in Java is object oriented, with all events descending from EventObject class in the
java.util.package.

 The EventObject class has a subclass AWTEvent, which is the parent of all AWT event classes.
 The following diagram shows the hierarchy of AWT event class:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

AWT Event Classes:

 AWT Event is the subclass of EventObject class.
 The subclasses of AWT Event class can be categorized into two:

1. Semantic Events
2. Low-level Events
1. Semantic Events:
A semantic event is one that expresses what the user is doing, such as ―clicking the button‖. The following
event classes are semantic event classes:
1. ActionEvent
2. AdjustmentEvent
3. ItemEvent
4. TextEvent
2. Low-level Events:
Low-level events are those that makes the semantic events possible. For example, a semantic event
―button click‖ involves series of low level events such as mouse down, mouse moves and a mouse up.
The following event classes are Low-level event classes:
1. ComponentEvent
2. ContainerEvent
3. FocusEvent
4. KeyEvent
5. MouseEvent
6. WindowEvent
The following table shows the description of various event classes:

Event classes Description Event Source
ActionEvent Generated when a button is

pressed, a list item is double-
clicked, or a menu item is
selected.

Button, JButton

AdjustmentEvent Generated when a scrollbar is
manipulated

Scrollbar,
JScrollbar

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

ComponentEvent Generated when a component
is hidden, moved, resized or
becomes visible.

Component

ContainerEvent Generated when a component
is added to or removed from a
container

Component

FocusEvent Generated when a component
gains or loses keyboard focus

Component

ItemEvent Generated when a checkbox or
list item is clicked; also occurs
when a choice selection is
made or a checkable menu
item is selected or deselected.

List, JList
Choice, Checkbox

KeyEvent Generated when the input is
received from the keyboard

keyboard

MouseEvent Generated when the mouse is
dragged, moved, clicked,
pressed or released; also
generated when the mouse
enters or exits a component.

Mouse

MouseWheelEvent Generated when the mouse
wheel is moved

Mouse

TextEvent Generated when the value of
the text field or text area is
changed.

TextField or
TextArea

WindowEvent Generated when a window is
activated, closed, deactivated.

Window

EVENT LISTENERS:
The task of handling an event is carried out by Event Listeners. When an event occurs,
1. An event object of the appropriate type is created.
2. This object is then passed to a Listener.
3. A listener must implement the interface that has the methods for event handling

Sour
ce

Event
Class

Class Methods Listener
Interface

Interface
Methods

Button ActionEvent String
getActionCommand()

ActionListener actionPerformed(Action
Event ae)

List,
Choice,
Checkbox

ItemEvent Object getItem()
ItemSelectable
getItemSelectable()

ItemListener itemStateChanged(Item
Event ie)

Keyboard KeyEvent char getKeyChar()
int getKeyCode()

KeyListener keyPressed(KeyEvent
ke)
keyReleased(KeyEvent
ke)
keyTyped(KeyEvent ke)

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

Mouse MouseEvent int getX()
int getY()

MouseListener mouseClicked(MouseEv
ent me)
mouseEntered(MouseEv
ent me)
mouseExited(MouseEve
nt me)
mousePressed(MouseEv
ent me)
mouseReleased(MouseE
vent me)

MouseMotionListener mouseDragged(MouseEvent me)
mouseMoved(MouseEvent me)

Scrollbar AdjustmentEve
nt

Adjustable
getAdjustable()
int
getAdjustmentType()
int getValue()

AdjustmentListen
er

adjustmentValueChange
d(AdjustmentEvent ae)

Component FocusEvent Boolean isTemporary() FocusListener focusGained(FocusEven
t fe)
focusLost(FocusEvent
fe)

TextField
and
TextArea

TextEvent -- TextListener textValueChanged(Text
Event)

Window Window
Event

Window getWindow()
int getOldState()
int getNewState()

WindowListener windowActivated(Wind
owEvent we)
windowClosed(Window
Event we)
windowClosing(Windo
wEvent we)
windowDeactivated(Wi
ndowEvent we)
windowDeiconified(Win
dowEvent we)
windowIconified(Windo
wEvent we)
windowOpened(Windo
wEvent we)

Component Compon
entEvent

Component
getComponent()

ComponentListen
er

componentHidden(Com
ponentEvent ce)
componentMoved(Com
ponentEvent ce)
componentResized(Com
ponentEvent ce)
componentShown(Comp
onentEvent ce)

Container Containe Component getChild() ContainerListener componentAdded(Conta

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

rEvent Container
getContainer()

inerEvent ce)
componentRemoved(Co
ntainerEvent ce)

Registering Event Listeners:
Steps:
1. Either create a class that implements a listener interface or extend a class that
implements a listener interface.
Example:
public class MyClass implements ActionListener {

}
2. Register your listener with the source.
Example:
Component.addActionListener(instanceOfMyClass)
3. Implement the user actions by overriding the methods of listener interface
Example:
public void actionPerformed(ActionEvent e)
{

// code that reacts to the action or event
--
}
Example: Program to toggle the background color on every click of button
import java.awt.*;
import java.awt.event.*;
/* class implementing ActionListener interface and it must
override all the methods of the listener interface */
public class ToggleButton extends Frame implements ActionListener
{
boolean flag=true;
Button b1;
ToggleButton(String s)
{
super(s);
setSize(400,400);
setVisible(true);
setLayout(new FlowLayout());
b1=new Button("change color");
add(b1); // placing the button control
b1.addActionListener(this); // b1=event source, registering event listener
}
public void actionPerformed(ActionEvent ae) // code to handle the event
{
String str=ae.getActionCommand();

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

if(str.equals("change color"))
{
flag=!flag;
repaint();
}
}
public void paint(Graphics g)
{
if(flag)
setBackground(Color.red);
else
setBackground(Color.yellow);
}
public static void main(String[] arg)
{
ToggleButton T=new ToggleButton("Handling Button Event");
}
}
Output:

HANDLIND MOUSE, KEYBOARD AND WINDOW EVENTS
HANDLING MOUSE EVENTS

 Mouse events are generated when the mouse is dragged, moved, clicked, pressed or released; also
generated when the mouse enters or exits a component.

 To handle Mouse events, class must implement the MouseListener & MouseMotionListener
interface. Register mouse listener & mouse motion listener to receive notifications about MouseEvents.

Syntax:
addMouseListener(this);
addMouseMotionListener(this);
Description:
Source: Mouse Event

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

Class: java.awt.event.MouseEvent
Listener Interface: java.awt.event.MouseListener
java.awt.event.MouseMotionListener
Example:
The following program demonstrates Mouse event handling. When user drag the mouse it draws a line
along the motion path.
import java.awt.*;
import java.awt.event.*;
public class MouseHandler extends Frame implements MouseListener,MouseMotionListener
{
int x1,y1,x2,y2;
String str;
MouseHandler(String s)
{
super(s);
setSize(300,300);
setVisible(true);
addMouseListener(this);
addMouseMotionListener(this);
}
public void mouseDragged(MouseEvent me)
{
x1=x2;y1=y2;
x2=me.getX();
y2=me.getY();
Graphics g=this.getGraphics();
g.drawLine(x1,y1,x2,y2);
}
public void mouseMoved(MouseEvent me)
{
x1=x2;y1=y2;
x2=me.getX();
y2=me.getY();
str="Mouse Moving at ("+x2+","+y2+")";
repaint();
}
public void mouseClicked(MouseEvent me)
{
x2=me.getX();
y2=me.getY();
str="Mouse Clicked at ("+x2+","+y2+")";
repaint();

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

}
public void mouseEntered(MouseEvent me)
{
x2=200;y2=100;
str="Mouse Entered";
repaint();
}
public void mouseExited(MouseEvent me)
{
x2=200;y2=100;
str="Mouse Exited";
repaint();
}
public void mousePressed(MouseEvent me)
{
x1=x2=me.getX();
x1=y2=me.getY();
}
public void mouseReleased(MouseEvent me)
{
str="Mouse Released at ("+x2+","+y2+")";
Graphics g=this.getGraphics();
g.drawString(str,x2,y2);
}
public void paint(Graphics g)
{
g.drawString(str,x2,y2);
}
public static void main(String arg[])
{
MouseHandler ob=new MouseHandler("Mouse event Demo");
}
}
Program Explanation:
In the above program, the MouseHanlder class extends Frame and implements both
MouseListener and MouseMotionListener interfaces to handle mouse events. These two interfaces
contain methods to receive and process the various types of mouse events. Here, ―me‖ is a reference to
the object receiving mouse events. The Frame then implements all the methods defined by the
MouseListener and MouseMotionListener interfaces. These are the event handlers for the various
mouse events. Each method handles its event and then returns.

Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

HANDLING KEYBOARD EVENTS

 Keyboard events are generated when the input is received from the keyboard

 To handle keyboard events, class must implement the KeyListener interface. Register key listener to
receive notifications about KeyEvents.

Syntax:
addKeyListener(this);
Description:
Source: KeyBoard
Event Class: java.awt.event.KeyEvent
Listener Interface: java.awt.event.KeyListener
Example:
The following program demonstrates keyboard input. When program receives keystrokes, identifies the
key and perform the corresponding actions specified by the program.
import java.awt.*;
import java.awt.event.*;
public class KeyboardHandler extends Frame implements KeyListener
{
int x=20,y=20;
String msg="";
KeyboardHandler(String s)
{
super(s);
setSize(300,300);
setVisible(true);
addKeyListener(this);
requestFocus();
}
public void keyPressed(KeyEvent ke)
{
Font f=new Font("Monotype Corsiva",Font.BOLD,15);
msg+=ke.getKeyChar();

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

setFont(f);
}
public void keyTyped(KeyEvent ke){ }
public void keyReleased(KeyEvent ke)
{
repaint();
}
public void paint(Graphics g)
{
g.drawString(msg,20,100);
}
public static void main(String arg[])
{
KeyboardHandler ob=new KeyboardHandler("Keyboard event Demo");
}
}
Output:

Program Explanation:
In the above program, the class extends Frame class and implements KeyListener to handle the event
generated through keyboard. When a key is pressed, a KEY_PRESSED event is generated. This results
in a call to the keyPressed() event handler. This handler gets the key typed by the user through
getKeyChar() method and collects the character in the string variable msg. When the key is released, a
KEY_RELEASED event is generated. The keyReleased() event handler calls the repaint() method to
display the message on the frame window.

INTRODUCTION OF SWING

The Swing-related classes are contained in javax.swing and its subpackages, such as javax.swing.tree.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

JApplet

Fundamental to Swing is the JApplet class, which extends Applet. Applets that useSwing must be
subclasses of JApplet. JApplet is rich with functionality that is notfound in Applet. For example,
JApplet supports various ―panes,‖ such as the content pane, the glass pane, and the root pane. For
the examples in this chapter, we will not be using most of JApplet’s enhanced features. However, one
difference between Applet and JApplet is important to this discussion, because it is used by the sample
applets in this chapter. When adding a component to an instance of JApplet, do not invoke the add()
method of the applet. Instead, call add() for the content pane of the JApplet object. The content pane
can be obtained via the method shown here:

Container getContentPane()
The add() method of Container can be used to add a component to a content pane. Its form is shown
here:
void add(comp)

Here, comp is the component to be added to the content pane. Icons and Labels
In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an image. Two of its
constructors are shown here:

ImageIcon(String filename) ImageIcon(URL url)

The first form uses the image in the file named filename. The second form uses the image in the resource
identified by url.
The ImageIcon class implements the Icon interface that declares the methods shown here:
Method Description
int getIconHeight() Returns the height of the icon in pixels.
int getIconWidth() Returns the width of the icon in pixels.
void paintIcon(Component comp, Graphics g, int x, int y)
Paints the icon at position x, y on the graphics context g. Additional information about the paint operation
can be provided in comp.
Swing labels are instances of the JLabel class, which extends JComponent. It can display text and/or an
icon. Some of its constructors are shown here:
JLabel(Icon i) Label(String s)
JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label. The align argument is either LEFT,RIGHT,
CENTER, LEADING, or TRAILING. These constants are defined in the SwingConstants interface,
along with several others used by the Swing classes.

The icon and text associated with the label can be read and written by the following methods:
Icon getIcon() String getText() void setIcon(Icon i)
void setText(String s)
Here, i and s are the icon and text, respectively.
The following example illustrates how to create and display a label containing bothan icon and a string.
The applet begins by getting its content pane. Next, an ImageIcon object is created for the file france.gif.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

This is used as the second argument to the JLabel constructor. The first and last arguments for the JLabel
constructor are the label text and the alignment. Finally, the label is added to the content pane.

import java.awt.*; import javax.swing.*;
/*
<applet code="JLabelDemo" width=250 height=150>
</applet>
*/
public class JLabelDemo extends JApplet { public void init() {
// Get content pane
Container contentPane = getContentPane();
// Create an icon
ImageIcon ii = new ImageIcon("france.gif");
// Create a label
JLabel jl = new JLabel("France", ii, JLabel.CENTER);
// Add label to the content pane contentPane.add(jl);
}
}
Output from this applet is shown here:

Text Fields

The Swing text field is encapsulated by the JTextComponent class, which extends JComponent. It
provides functionality that is common to Swing text components. One of its subclasses is JTextField,
which allows you to edit one line of text. Some of its constructors are shown here:

JTextField() JTextField(int cols)
JTextField(String s, int cols) JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.
The following example illustrates how to create a text field. The applet begins by getting its content pane,
and then a flow layout is assigned as its layout manager. Next, a JTextField object is created and is added
to the content pane.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

import java.awt.*; import javax.swing.*;
/*
<applet code="JTextFieldDemo" width=300 height=50>
</applet>
*/
public class JTextFieldDemo extends JApplet { JTextField jtf;
public void init() {
// Get content pane
Container contentPane = getContentPane(); contentPane.setLayout(new FlowLayout());
// Add text field to content pane jtf = new JTextField(15); contentPane.add(jtf);
}
}
Output from this applet is shown here:

Buttons

Swing buttons provide features that are not found in the Button class defined by theAWT. For example,
you can associate an icon with a Swing button. Swing buttons are subclasses of the AbstractButton class,
which extends JComponent. AbstractButton contains many methods that allow you to control the
behavior of buttons, check boxes, and radio buttons. For example, you can define different icons that are
displayed for the component when it is disabled, pressed, or selected. Another icon can be used as a
rollover icon, which is displayed when the mouse is positioned over that component.

The following are the methods that control this behavior:
void setDisabledIcon(Icon di) void setPressedIcon(Icon pi) void setSelectedIcon(Icon si) void
setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for these different conditions.
The text associated with a button can be read and written via the following methods:
 String getText()
void setText(String s)

Here, s is the text to be associated with the button.

Concrete subclasses of AbstractButton generate action events when they are pressed. Listeners register
and unregister for these events via the methods shown here:
void addActionListener(ActionListener al) void removeActionListener(ActionListener al) Here, al is the
action listener.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

AbstractButton is a superclass for push buttons, check boxes, and radio buttons. Each is examined next.

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an icon,a string, or both to
be associated with the push button. Some of its constructors are shown here: JButton(Icon i)
JButton(String s) JButton(String s, Icon i)
Here, s and i are the string and icon used for the button.

Check Boxes

The JCheckBox class, which provides the functionality of a check box, is a concrete implementation of
AbstractButton. Its immediate superclass is JToggleButton, which provides support for two-state
buttons. Some of its constructors are shown here:

JCheckBox(Icon i) JCheckBox(Icon i, boolean state) JCheckBox(String s) JCheckBox(String s, boolean
state) JCheckBox(String s, Icon i)
JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box is initially selected.
Otherwise, it is not.
The state of the check box can be changed via the following method: void setSelected(boolean state)
Here, state is true if the check box should be checked.
The following example illustrates how to create an applet that displays four checkboxes and a text field.
When a check box is pressed, its text is displayed in the text field.
The content pane for the JApplet object is obtained, and a flow layout is assigned as itslayout manager.
Next, four check boxes are added to the content pane, and icons are assigned for the normal, rollover, and
selected states. The applet is then registered to receive item events. Finally, a text field is added to the
content pane.

When a check box is selected or deselected, an item event is generated. This is handled by
itemStateChanged(). Inside itemStateChanged(), the getItem() method gets the JCheckBox object
that generated the event. The getText() method gets the text for that check box and uses it to set the text
inside the text field.

import java.awt.*; i
mport java.awt.event.*;
import javax.swing.*;
/*
<applet code="JCheckBoxDemo" width=400 height=50>
</applet>
*/
public class JCheckBoxDemo extends JApplet implements ItemListener {
JTextField jtf; public void init() {
// Get content pane
Container contentPane = getContentPane(); contentPane.setLayout(new FlowLayout());
// Create icons

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

ImageIcon normal = new ImageIcon("normal.gif"); ImageIcon rollover = new ImageIcon("rollover.gif");
ImageIcon selected = new ImageIcon("selected.gif");
// Add check boxes to the content pane JCheckBox cb = new JCheckBox("C", normal);
cb.setRolloverIcon(rollover); cb.setSelectedIcon(selected); cb.addItemListener(this);
contentPane.add(cb);
cb = new JCheckBox("C++", normal); cb.setRolloverIcon(rollover); cb.setSelectedIcon(selected);
cb.addItemListener(this); contentPane.add(cb);
cb = new JCheckBox("Java", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
 cb.addItemListener(this);
contentPane.add(cb);
cb = new JCheckBox("Perl", normal); cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);
// Add text field to the content pane
jtf = new JTextField(15); contentPane.add(jtf);
}
public void itemStateChanged(ItemEvent ie)
{
JCheckBox cb = (JCheckBox)ie.getItem(); jtf.setText(cb.getText());
}
}
Here is the output:

Radio Buttons

Radio buttons are supported by the JRadioButton class, which is a concrete implementation of
AbstractButton. Its immediate superclass is JToggleButton, which provides support for two- state
buttons. Some of its constructors are shown here:

JRadioButton(Icon i) JRadioButton(Icon i, boolean state) JRadioButton(String s) JRadioButton(String s,
boolean state) JRadioButton(String s, Icon i)
JRadioButton(String s, Icon i, boolean state)
Here, i is the icon for the button. The text is specified by s. If state is true, the button is initially selected.
Otherwise, it is not.

Radio buttons must be configured into a group. Only one of the buttons in that group can be selected at

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

any time. For example, if a user presses a radio button that is in a group, any previously selected button in
that group is automatically deselected. The ButtonGroup class is instantiated to create a button group. Its
default constructor is invoked for this purpose. Elements are then added to the button group via the
following method:
void add(AbstractButton ab)
Here, ab is a reference to the button to be added to the group.

Radio button presses generate action events that are handled by actionPerformed(). The
getActionCommand() method gets the text that is associated with a radio button and uses it to set the text
field.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JRadioButtonDemo" width=300 height=50>
</applet>
*/
public class JRadioButtonDemo extends JApplet implements ActionListener {
JTextField tf; public void init() {
// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Add radio buttons to content pane
JRadioButton b1 = new JRadioButton("A");
b1.addActionListener(this);
contentPane.add(b1);
JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this); contentPane.add(b2);
JRadioButton b3 = new JRadioButton("C");
 b3.addActionListener(this);
contentPane.add(b3);
// Define a button group
ButtonGroup bg = new ButtonGroup();
 bg.add(b1);
bg.add(b2);
bg.add(b3);
// Create a text field and add it
// to the content pane
tf = new JTextField(5);
contentPane.add(tf);
}
public void actionPerformed(ActionEvent ae)
{
 tf.setText(ae.getActionCommand());

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

}
}
Output from this applet is shown here:

Combo Boxes

Swing provides a combo box (a combination of a text field and a drop-down list) through the JComboBox
class, which extends JComponent. A combo box normally displays one entry. However, it can also
display a drop-down list that allows a user to select a different entry. You can also type your selection into
the text field. Two of JComboBox’s constructors are shown here:
JComboBox() JComboBox(Vector v)
Here, v is a vector that initializes the combo box.
Items are added to the list of choices via the addItem() method, whose signature is shown here:
void addItem(Object obj)
Here, obj is the object to be added to the combo box.
The following example contains a combo box and a label. The label displays an icon. The combo box
contains entries for ―France‖, ―Germany‖, ―Italy‖, and ―Japan‖.
When a country is selected, the label is updated to display the flag for that country.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JComboBoxDemo" width=300 height=100>
</applet>
*/
public class JComboBoxDemo extends JApplet implements ItemListener {
JLabel jl;
ImageIcon france, germany, italy, japan;
 public void init() {
// Get content pane
Container contentPane = getContentPane();
 contentPane.setLayout(new FlowLayout());
// Create a combo box and add it
// to the panel
JComboBox jc = new JComboBox();
 jc.addItem("France");
jc.addItem("Germany");
jc.addItem("Italy");
 jc.addItem("Japan");
jc.addItemListener(this);

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

contentPane.add(jc);
// Create label
jl = new JLabel(new ImageIcon("france.gif"));
contentPane.add(jl);
}
public void itemStateChanged(ItemEvent ie)
{
 String s = (String)ie.getItem();
jl.setIcon(new ImageIcon(s + ".gif"));
}
}
Output from this applet is shown here:

Tabbed Panes

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has a title.
When a user selects a folder, its contents become visible. Only one of the folders may be selected at a
time. Tabbed panes are commonly used for setting configuration options.
Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We will use its
default constructor. Tabs are defined via the following method:
void addTab(String str, Component comp)
Here, str is the title for the tab, and comp is the component that should be added to the tab. Typically, a
JPanel or a subclass of it is added.
The general procedure to use a tabbed pane in an applet is outlined here:
Create a JTabbedPane object.
Call addTab() to add a tab to the pane. (The arguments to this method define the title of the tab and the
component it contains.)
Repeat step 2 for each tab.
Add the tabbed pane to the content pane of the applet.

Scroll Panes
A scroll pane is a component that presents a rectangular area in which a component may be viewed.
Horizontal and/or vertical scroll bars may be provided if necessary.
Scroll panes are implemented in Swing by the JScrollPane class, which extendsJComponent. Some of
its constructors are shown here:
JScrollPane(Component comp) JScrollPane(int vsb, int hsb)
JScrollPane(Component comp, int vsb, int hsb)

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

Here, comp is the component to be added to the scroll pane. vsb and hsb are intconstants that define when
vertical and horizontal scroll bars for this scroll pane areshown. These constants are defined by the
ScrollPaneConstants interface. Some
examples of these constants are described as follows:
Constant Description

HORIZONTAL_SCROLLBAR_ALWAYS Always provide horizontal scroll bar
HORIZONTAL_SCROLLBAR_AS_NEEDED Provide horizontal scroll bar, if needed
VERTICAL_SCROLLBAR_ALWAYS Always provide vertical scroll bar
VERTICAL_SCROLLBAR_AS_NEEDED Provide vertical scroll bar, if needed

Here are the steps that you should follow to use a scroll pane in an applet:
Create a JComponent object.
Create a JScrollPane object. (The arguments to the constructor specify the component and the policies for
vertical and horizontal scroll bars.)
Add the scroll pane to the content pane of the applet.

The following example illustrates a scroll pane. First, the content pane of the JApplet object is obtained
and a border layout is assigned as its layout manager. Next, a JPanel object is created and four hundred
buttons are added to it, arranged into twenty columns. The panel is then added to a scroll pane, and the
scroll pane is added to the content pane. This causes vertical and horizontal scroll bars to appear. You can
use the scroll bars to scroll the buttons into view.
 import java.awt.*;
import javax.swing.*;
/*
<applet code="JScrollPaneDemo" width=300 height=250>
</applet>
*/
public class JScrollPaneDemo extends JApplet
{
 public void init()
{
// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
// Add 400 buttons to a panel
 JPanel jp = new JPanel();
jp.setLayout(new GridLayout(20, 20));
int b = 0;
for(int i = 0; i < 20; i++)
{
 for(int j = 0; j < 20; j++)
{
jp.add(new JButton("Button " + b));
++b;
}
}

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

// Add panel to a scroll pane
int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;
JScrollPane jsp = new JScrollPane(jp, v, h);
// Add scroll pane to the content pane contentPane.add(jsp, BorderLayout.CENTER);
}
}
Output from this applet is shown here:

Trees
A tree is a component that presents a hierarchical view of data. A user has the ability to expand or
collapse individual subtrees in this display. Trees are implemented in Swing by the JTree class, which
extends JComponent. Some of its constructors are shown here:
JTree(Hashtable ht) JTree(Object obj[]) JTree(TreeNode tn) JTree(Vector v)
The first form creates a tree in which each element of the hash table ht is a child node.
Each element of the array obj is a child node in the second form. The tree node tn is the root of the tree in
the third form. Finally, the last form uses the elements of vector v as child nodes.
A JTree object generates events when a node is expanded or collapsed. The
addTreeExpansionListener() and removeTreeExpansionListener() methods allow listeners to
register and unregister for these notifications. The signatures of these methods are shown here: void
addTreeExpansionListener(TreeExpansionListener tel)
void removeTreeExpansionListener(TreeExpansionListener tel)

Here, tel is the listener object.
The getPathForLocation() method is used to translate a mouse click on a specific point of the tree to a
tree path. Its signature is shown here:
TreePath getPathForLocation(int x, int y)
Here, x and y are the coordinates at which the mouse is clicked. The return value is a TreePath
object that encapsulates information about the tree node that was selected by the user.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

Tables
A table is a component that displays rows and columns of data. You can drag the cursor on column
boundaries to resize columns. You can also drag a column to a new position. Tables are implemented by
the JTable class, which extends JComponent.
One of its constructors is shown here:
JTable(Object data[][], Object colHeads[])
Here, data is a two-dimensional array of the information to be presented, and colHeads

is a one-dimensional array with the column headings. Here are the steps for using a table in an applet:

Create a JTable object.
Create a JScrollPane object. (The arguments to the constructor specify the table and the policies for
vertical and horizontal scroll bars.)
Add the table to the scroll pane.
Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. The content pane of the JApplet object is
obtained and a border layout is assigned as its layout manager.A one-dimensional array of strings is
created for the column headings. This table has three columns. A two-dimensional array of strings is
created for the table cells. You can see that each element in the array is an array of three strings. These
arrays are passed to the JTable constructor. The table is added to a scroll pane and then the scroll pane is
added to the content pane.
import java.awt.*;
import javax.swing.*;
/*
<applet code="JTableDemo" width=400 height=200>
</applet>
*/
public class JTableDemo extends JApplet {

public void init() {
// Get content pane
Container contentPane = getContentPane();
// Set layout manager contentPane.setLayout(new BorderLayout());
// Initialize column headings
final String[] colHeads = { "Name", "Phone", "Fax" };
// Initialize data
final Object[][] data = {
{ "Gail", "4567", "8675" },
{ "Ken", "7566", "5555" },
{ "Viviane", "5634", "5887" },
{ "Melanie", "7345", "9222" },
{ "Anne", "1237", "3333" },
{ "John", "5656", "3144" },

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

{ "Matt", "5672", "2176" },
{ "Claire", "6741", "4244" },
{ "Erwin", "9023", "5159" },
{ "Ellen", "1134", "5332" },
{ "Jennifer", "5689", "1212" },
{ "Ed", "9030", "1313" },
{ "Helen", "6751", "1415" }
};
// Create the table
JTable table = new JTable(data, colHeads);
// Add table to a scroll pane
int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED; JScrollPane jsp = new
JScrollPane(table, v, h);
// Add scroll pane to the content pane contentPane.add(jsp, BorderLayout.CENTER);
}
}
Here is the output:

Definition: Layout Management
Layout Management is the process of arranging components within a window. Layout manager
automatically arranges several components within a window. Each container object has a layout manager
associated with it.
•Panel,Applet - Flow Layout
•Frame - Border Layout

Whenever a container is resized, the layout manager is used to position each of the components within it.
General syntax for setting layout to container
void setLayout(LayouManager obj)
Various Layout Managers are
1. FlowLayout
2. BorderLayout
3. Grid Layout
4. GridbagLayout
5. Card Layout
6. BoxLayout
Arrange component without using layout Manager:
You can position components manually using setBounds() method defined by Component class.
1. Disable the default manager of your container.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

setLayout(null);
2. Givethe location and size of the component which is to be added in the container. setBounds(int x, int y,
int width, int height);
Example:
Button b=new Button(―click me‖);
b.setBounds(10,10,50,20);

FlowLayout

✔ FlowLayout arranges the components in rows from left-to-right and top-to-bottom order based on the order
in which they were added to the container.

✔ FlowLayout arranges components in rows, and the alignment specifies the alignment of the rows. For
example, if you create a FlowLayout that’s left aligned, the components in each row will appear next to the
left edge of the container.

✔ The flow layout manager lines the components horizontally until there is no more room and then starts a
new row of components.

✔ When the user resizes the container, the layout manager automatically reflows the components to fill the
available space.
Constructors:
∙ FlowLayout() - create default layout, which centers component and leaves 5 pixels spaces between each
component.
∙ FlowLayout(int how)-specify how each line is aligned.
Valid values for how are:
FlowLayout.LEFT
FlowLayout.CENTER
FlowLayout.RIGHT
∙ FlowLayout(int how, int horz, int vert) - allow you to specify the horizontal and vertical gaps that should
appear between components, and if you use a constructor that doesn’t accept these values, they both default
to 5.
Example:
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class FlowDemo extends JFrame
{
 public FlowDemo()
 {
 setTitle("Flow Layout Demo");
 Container cp=getContentPane();
 cp.setLayout(new FlowLayout(FlowLayout.LEFT));
 JButton ok=new JButton("OK");
 JButton cancel=new JButton("CANCEL");
 JButton reset=new JButton("RESET");
 cp.add(ok);
 cp.add(cancel);
 cp.add(reset);
 setVisible(true);
 setSize(300,300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 public static void main(String[] args)
 {
 FlowDemo f=new FlowDemo();
 }
}
Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

GridLayout

✔ The GridLayout layout manager divides the available space into a grid of cells, evenly allocating the space

among all the cells in the grid and placing one component in each cell. ✔ Cells are always same size.

✔ When you resize the window, the cells grow and shrink, but all the cells have identical sizes.
Constructors:
∙ GridLayout(int rows, int cols) - construct a grid with specified rows and cols. ∙ GridLayout(int rows, int
cols, int hspace, int vspace) - to specify the amount of horizontal and vertical space that should appear
between adjacent components.
Example:
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class GridDemo extends JFrame
{
 GridDemo()
 {
 JButton[] button=new JButton[15];
 int j=0;
 setSize(400,300);
 setVisible(true);
 Container cp=getContentPane();
 cp.setLayout(new GridLayout(5,5));
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 for (int i=0;i<15; i++)
 {
 button[i]=new JButton(" "+i);
 button[i].setBackground(Color.pink);
 button[i].setFont(new Font("SanSerif", Font.BOLD,12)); cp.add(button[i]);
 }
}
public static void main(String[] arg)
{
 GridDemo cd=new GridDemo();
} }
Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

Border Layout

✔ Border layout divides the container into five regions - North, West, East, South and Center.

✔ The five regions correspond to top, left, bottom, right and center of the container. ✔ Each region can have
only one component.
Constructors:
∙ BorderLayout()
∙ BorderLayout(int hspace, int vspace) – leave space between components.
Border layout grows all components to fill the available space.
You can add components by specifying a constraint as follows:
 BorderLayout.CENTER|NORTH|SOUTH|EAST|WEST
Example:
import java.awt.*;
import javax.swing.*;
public class BorderDemo extends JFrame
{
 BorderLayout grid=new BorderLayout();
 Button b1=new Button("Niorth");
 Button b2=new Button("South");
 Button b3=new Button("Center");
 Button b4=new Button("East");
 Button b5=new Button("West");
 BorderDemo(String s)
 {
 super(s);
 setLayout(grid);
 add(b1,BorderLayout.NORTH);
 add(b2,BorderLayout.SOUTH);
 add(b3,BorderLayout.CENTER);
 add(b4,BorderLayout.EAST);
 add(b5,BorderLayout.WEST);
 setSize(200,200);
 setVisible(true);
 }
 public static void main(String arg[])
 {
 BorderDemo ob=new BorderDemo("BorderLayout Demo");
 }
}
Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

GridBag Layout - Gridlayout without limitations

✔ In Grid bag layout, the rows and columns have variable sizes.

✔ It is possible to merge two adjacent cells and make a space for placing larger components.

✔ To describe the layout to grid bag manager, you must follow the procedure:
1. Create an object of type GridBagLayout. No need to specify rows and column. 2. Set this GridBagLayout
object to the container.
3. Create an object of type GridBagConstraints. This object will specify how the components are laid out
within the grid bag.
4. For each components, fill in the GridBagConstraints object.Finally add the component with the constraint
by using the call:
add(Component, constraint);
GridBagConstraints:
∙ Gridx – specify the column position of the component to be added
∙ Gridy - specify the row position of the component to be added
∙ Gridwidth- specify how many columns occupied by the component
∙ Gridheight - specify how many rows occupied by the component
∙ fill – used when the component’s display area is larger than the component’s requested size to determine
whether and how to resize the component.
∙ anchor – used when the component is smaller than its display area to determine where to palce the
component
∙ weightx – used to determine how to distribute space among columns, which is important for specifying
resizing behaviour.
∙ weighty - used to determine how to distribute space among rows, which is important for specifying resizing
behaviour.
∙ ipadx – specifies the component’s internal padding within the layout, how much to add to the minimum
width of the component. Default value=0.
∙ ipady - specifies the component’s internal padding within the layout, how much to add to the minimum
height of the component. Default value=0.
∙ insets – specifies the external padding of the component – the minimum amount of space between the
component and the edges of its display are. Default is (0,0,0,0)
Example:
import java.awt.*;
import javax.swing.*;
public class GridBagDemo extends JFrame
{
 GridBagLayout gb=new GridBagLayout();
 GridBagConstraints gc1= new GridBagConstraints();

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

 GridBagConstraints gc2= new GridBagConstraints();
 GridBagConstraints gc3= new GridBagConstraints();
 Button b1=new Button("one");
 Button b2=new Button("Two");
 Button b3=new Button("Three");
 GridBagDemo(String s)
 {
 super(s);
 setLayout(gb);
 gc1.gridx=0;
 gc1.gridy=0;
 gc1.gridwidth=2;
 gc1.gridheight=1;
 gc2.gridx=0;
 gc2.gridy=1;
 gc2.gridwidth=1;
 gc2.gridheight=1;
 gc3.gridx=1;
 gc3.gridy=1;
 gc3.gridwidth=1;
 gc3.gridheight=1;
 add(b1,gc1);
 add(b2,gc2);
 add(b3,gc3);
 setSize(200,200);
 setVisible(true);
 }
public static void main(String arg[])
{
 GridBagDemo ob=new GridBagDemo("GridBagLayout Demo");
}
}

Card Layout

✔ The card layout is unique in which it stores several different layouts.

✔ Each layout can be thought of as being on a separate index card in a deck that can be shuffled so that any
card is on top at a given time.

✔ You can prepare the other layouts and have them hidden, ready to be activated when needed.
Constructors:
∙ CardLayout() - creates a default card layout.

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

∙ CardLayout(int horz, int vert) - allows to specify the horizontal and vertical space left between
components.
Example:
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
public class CardDemo extends JFrame implements ActionListener
{
 JCheckBox win98, winNT, solaris, mac;
 JPanel osCards;
 CardLayout cardLO;
 JButton Win, Others;
 CardDemo(String s)
 {
 super(s);
 Win=new JButton("Windows");
 Others=new JButton("Others");
 add(Win);
 add(Others);
 cardLO=new CardLayout();
 osCards=new JPanel();
 osCards.setLayout(cardLO); // set Panel layout to card layout
 win98=new JCheckBox("Window 98/XP",null,true);
winNT=new JCheckBox("Windows NT/2000");
solaris=new JCheckBox("Solaris");
 mac=new JCheckBox("MacOs");
 JPanel winpan=new JPanel();
 winpan.add(win98);
 winpan.add(winNT);
 JPanel otherpan=new JPanel();
 otherpan.add(solaris);
 otherpan.add(mac);
 // add panels to card deck panel
 osCards.add(winpan,"Windows");
 osCards.add(otherpan,"Others");
 // add cards to main window JFrame
 add(osCards);
 Win.addActionListener(this);
 Others.addActionListener(this);
 setVisible(true);
 setSize(400,400);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); }
 public void actionPerformed(ActionEvent ae)
 {
 if(ae.getSource()==Win)
 cardLO.show(osCards, "Windows");
 else
 cardLO.show(osCards, "Others");
 }
 public static void main(String[] args)
 {
 CardDemo obj=new CardDemo("Card Layout Demo");
 }
}
Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

Box Layout

Box Layout is the default layout for a Box container.
The Box Layout manager allows multiple components to be laid out either vertically or horizontally.
The components will not wrap. For example, a vertical arrangement of components will stay vertically
arranged when the frame is resized.
Constructor of BoxLayout class
 BoxLayout(Container c, int axis): creates a box layout that arranges the components with the given axis.
The BoxLayout manager is designed with an axis parameter that specifies the type of layout. This can be
done in four ways:
X_AXIS – components are placed horizontally from left to right
Y_AXIS - components are placed vertically from top to bottom
LINE_AXIS – components are placed in a line, based on the container’s
 ComponentOrientation property
Table: LINE_AXIS

ComponentOrientation Components

Horizontal Components are kept vertically, otherwise kept horizontally

Horizontal; left to right Placed left to right, otherwise right to left

Vertical Orientations Laid from top to bottom

PAGE_AXIS – Components are placed the way text lines are written on a page, based on the container’s
ComponentOrientation property

Table: PAGE_AXIS

ComponentOrientation Components

Horizontal Horizontally, else vertically placed

Horizontal; left to right Placed left to right, otherwise right to left

Vertical Orientations Laid from top to bottom

Example:
import java.awt.*;
import javax.swing.*;
public class BoxDemo extends JFrame
{
 void boxDemo()
 {
 setTitle("Box Layout");

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

 Container content=getContentPane();
 setVisible(true);
 setSize(300,300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Box b1=new Box(BoxLayout.X_AXIS);
 // Box b2=new Box(BoxLayout.Y_AXIS);
 for(int i=0;i<3;i++)
 {
 b1.add(new JButton("Button "+i));
 // b2.add(new JButton("Button "+i));
 }
 content.add(b1);
 // content.add(b2);
 }
 public static void main(String[] args)
 {
 BoxDemo demo=new BoxDemo();
 demo.boxDemo();
 }
}
Output:

Horizontal Box

Vertical Box
Example Program 1: ADDITION OF TWO NUMBERS import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class addition extends JFrame implements ActionListener { JFrame fr;
JLabel no1;
JLabel no2;
JLabel result;
JTextField F1;
JTextField F2;
JTextField F3;
JButton calculate;
JButton clear;

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

JButton exit;
public addition()
{
JFrame fr=new JFrame("Addition of two mumer using swing"); fr.setSize(1000,1000);
fr.setVisible(true);
fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container c=fr.getContentPane();
c.setLayout(null);
c.setBackground(Color.pink);
no1 = new JLabel("Number 1");
no1.setBounds(50,80,100,30);
F1 = new JTextField();
F1.setBounds(170,80,100,30);
no2 = new JLabel("Number 2");
no2.setBounds(50,120,100,30);
F2 = new JTextField();
F2.setBounds(170,120,100,30);
result = new JLabel("Result");
result.setBounds(50,160,100,30);
F3 = new JTextField();
F3.setBounds(170,160,100,30);
calculate=new JButton("Calculate");
calculate.setBounds(70,200,100,30);
calculate.addActionListener(this);
clear=new JButton("Clear");
clear.setBounds(200,200,100,30);
clear.addActionListener(this);
exit=new JButton("Exit");
exit.setBounds(340,200,100,30);
exit.addActionListener(this);
c.add(no1);
c.add(F1);
c.add(no2);
c.add(F2);
c.add(result);
c.add(F3);
c.add(calculate);
c.add(clear);
c.add(exit);
}
public void actionPerformed(ActionEvent ae)
{
 if(ae.getSource()==calculate)
 {

 if(F1.getText().equals("")||(F2.getText().equals("")))
 {
 JOptionPane.showMessageDialog(fr,"Enter 2 integer numbers and click calculate button");
 }
 else
 {
 int n1 = Integer.parseInt(F1.getText());
 int n2 = Integer.parseInt(F2.getText());
 int no4 = n1 + n2; // 10
 String s1 = String.valueOf(no4);
 F3.setText(s1);
 }

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

 }
if(ae.getSource()==clear)
{
F1.setText("");
F2.setText("");
F3.setText("");
}
if(ae.getSource()==exit)
{
 System.exit(0);
}
}
public static void main(String[] args) {
new addition();
}
}

Example program 2: Student Registration form
 import java.awt.*;
import java.awt.event.*;

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

import javax.swing.*;
class testing1 extends JFrame implements ActionListener {
JTextField name_txt ;
 JTextField fname_txt;
JRadioButton male;
JRadioButton female;
 JComboBox day;
 JComboBox month;
 JComboBox year;
 JTextArea add_txtArea;
JTextField phone_txt;
JTextField email_txt;
JCheckBox chkbox;
 JButton submit_btn;
 JTextArea output_txtArea;
public testing1()
{
// Step 1 : Creating a frame using JFrame class
JFrame frame=new JFrame("Registration Form Example"); frame.setVisible(true);
frame.setSize(1000,1000);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Step 2 : setting background color of Frame.
Container c=frame.getContentPane();
c.setLayout(null);
c.setBackground(Color.pink);

// step 3 : creating JLabel for Heading
JLabel heading_lbl=new JLabel("Registration Form"); heading_lbl.setBounds(250,5,200,40);

// Step 4 : Creating JLabel for Name
JLabel name_lbl=new JLabel("Name : ");
name_lbl.setBounds(50,80,100,30);
// Creating JTextField for Name
name_txt=new JTextField();
name_txt.setBounds(180,80,180,30);
// Step 5 : Creating JLabel for Father's Name
JLabel fname_lbl=new JLabel("Father's Name : ");
fname_lbl.setBounds(50,120,150,30);
// Creating JTextField for Father's name
fname_txt=new JTextField();
fname_txt.setBounds(180,120,180,30);
// Step 6 : Creating JLabel for Gender
JLabel gender_lbl=new JLabel("Gender : ");
gender_lbl.setBounds(50,160,100,30);

// Creating JRadioButton for the Male
male=new JRadioButton("Male");
male.setBounds(180,160,70,30);
 // Creating JRadioButton for the Female
female=new JRadioButton("Female");
female.setBounds(280,160,80,30);
 // Step 7 : Creating JLabel for Date of Birth
JLabel dob_lbl=new JLabel("Date of Birth : ");
dob_lbl.setBounds(50,200,100,30);
// Creating JComboBox for the day
String day_arr[]=new String[31];
for(int i=1;i<=31;i++)

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

day_arr[i-1]=Integer.toString(i);
day=new JComboBox(day_arr);
day.setBounds(180,200,40,30);
// Creating JComboBox for the month
String
month_arr[]={"Jan","Feb","March","April","May","June","July","Aug","Sept","Oct","No v","Dec" };
month=new JComboBox(month_arr);
month.setBounds(230,200,60,30);
// Creating JComboBox for the year
String year_arr[]=new String[70];
for(int i=1951;i<=2020;i++)
year_arr[i-1951]=Integer.toString(i);
year=new JComboBox(year_arr);
year.setBounds(300,200,60,30);
// Step 8 : Creating JLabel for the Address
JLabel add_lbl=new JLabel("Address : ");
add_lbl.setBounds(50,240,100,30);
// Creating JTextArea for the address
add_txtArea= new JTextArea();
add_txtArea.setBounds(180,240,180,100);
// Step 9 : Creating JLabel for the phone
JLabel phone_lbl=new JLabel("Phone No. : ");
phone_lbl.setBounds(50,350,100,30);
// Creating JTextField for the phone
phone_txt=new JTextField();
phone_txt.setBounds(180,350,180,30);
// Step 10 : Creating JLabel for the Email
JLabel email_lbl=new JLabel("Email : ");
email_lbl.setBounds(50,390,100,30);
// Creating JTextField for the Email
email_txt=new JTextField();
email_txt.setBounds(180,390,180,30);
// Step 11 : Creating JCheckBox for the license agreement chkbox=new JCheckBox("I accept the terms and
conditions"); chkbox.setBounds(50,430,300,30);

// Step 12 : Creating JButton for submit the details submit_btn=new JButton("Submit");
submit_btn.setBounds(180,500,120,40);

// Step 13 : Adding ActionListener on submit button submit_btn.addActionListener(this);

// Step 14 : Creating JTextArea for output
output_txtArea=new JTextArea();
output_txtArea.setBounds(380,80,260,320);

// Step 15 : Adding label components to the container
c.add(heading_lbl);
c.add(name_lbl);
c.add(fname_lbl);
c.add(gender_lbl);
c.add(male);
c.add(female);
c.add(dob_lbl);
c.add(add_lbl);
c.add(phone_lbl);
c.add(email_lbl);
// Step 16 : Adding JTextField, JTextArea, JComboBox, JCheckBox, JRadioButton to the container
c.add(name_txt);

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

c.add(fname_txt);
c.add(day);
c.add(month);
c.add(year);
c.add(add_txtArea);
c.add(phone_txt);
c.add(email_txt);
c.add(chkbox);
c.add(submit_btn);
c.add(output_txtArea);
} // ending of constructor
// step 17 :action to be performed when the button is clicked
public void actionPerformed(ActionEvent event)
{
 if(chkbox.isSelected()==true)
{
String name=name_txt.getText();
String fname=fname_txt.getText();
String gender="Male";
if(female.isSelected()==true)
 gender="Female";
String day_name=(String)day.getSelectedItem();
String month_name=(String)month.getSelectedItem();
String year_name=(String)year.getSelectedItem();
String add=add_txtArea.getText();
String phone=phone_txt.getText();
String email=email_txt.getText();

 // displaying value in the JTextArea
 output_txtArea.setText(" Name : " +name + "\n Father's Name : " +fname + "\n Gender : "+gender + "\n
Date of Birth : "+day_name + " "+month_name + " " +year_name + "\n Address : "+add + " \n Phone no :
"+phone + "\n Email : "+email + "\n ");
 }
else
{
 output_txtArea.setText("Please accept the terms and condition and submit your details");
}
}
public static void main(String args[])
{
 new testing1();
}
}
Sample Output:

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

EXAMPLE 3:
 import java.awt.*;
 import java.awt.event.*;
 public class MouseListenerExample extends Frame implements MouseListener {
 Label l;
 MouseListenerExample()
 {
 addMouseListener(this);

 l=new Label();
 l.setBounds(20,50,100,20);
 add(l);
 setSize(300,300);

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

 setLayout(null);
 setVisible(true);
 }
 public void mouseClicked(MouseEvent e) {
 l.setText("Mouse Clicked");
 }
 public void mouseEntered(MouseEvent e) {
 l.setText("Mouse Entered");
 }
 public void mouseExited(MouseEvent e) {
 l.setText("Mouse Exited");
 }
 public void mousePressed(MouseEvent e) {
 l.setText("Mouse Pressed");
 }
 public void mouseReleased(MouseEvent e) {
 l.setText("Mouse Released");
 }
 public static void main(String[] args) {
 new MouseListenerExample();
 }
 }
OUTPUT:

Menus
Menus are a standard way for windowed desktop applications to allow users to select options. For example,
applications typically have a File menu offering options (menu items) to save or open a file. In a windowed
environment the user will use their mouse to navigate and select menu items. Menus and menu items typically
also have the functionality of key combinations to select options, also known as keyboard shortcuts. In other
words, key combinations allow quick menu selections without the need of a mouse.
Creating Menus and Menu Items
Before exploring how to invoke code triggered by selecting menu options, let’s look at how to create menus.
For starters, you must create a menu bar (javafx.scene.control.MenuBar) object to hold many
javafx.scene.control.Menu objects. Each Menu object is similar to a tree hierarchal structure where Menu

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=oops-study-material-unit-5

objects can contain Menu and javafx.scene.control.MenuItem objects. Thus, a menu may contain other menus
as submenus or menus within menus. MenuItems are child options within a Menu object. You can think of
MenuItems as leaf nodes (containing no children) in a tree structure. Following list A shows the creation of
a menu bar with a File menu that has a Save option as a menu item.
List A: The creation of MenuBar, Menu, and MenuItem instances

MenuBar menuBar = new MenuBar();
Menu fileMenu = new Menu("File");
fileMenu.getItems().add(new MenuItem("Save"));
menuBar.getMenus().add(fileMenu);

Figure below shows the output of above list, a simple File menu containing a Save menu item.

Figure A File menu containing a Save menu item

Although you can create simple menu items, you may want more advanced options such as checked options
or radio buttons. Based on the inheritance hierarchy, the following are subclasses of the MenuItem class. The
following listing shows the available MenuItem subclasses to use as menu options.
A brief description of each subclass will follow.

 javafx.scene.control.CheckMenuItem
 javafx.scene.control.RadioMenuItem
 javafx.scene.control.CustomMenuItem
 javafx.scene.control.SeparatorMenuItem
 javafx.scene.control.Menu

A CheckMenuItem menu item is similar to a check box UI control, allowing the user to select items
optionally. The RadioMenuItem menu item is similar to the radio button UI control, allowing the user to
select only one item from an item group. When you want to create a custom menu item you can use the
CustomMenuItem class. For instance, you may want to have a menu option that behaves like a toggle button.
Next is a SeparatorMenuItem, which is really a derived class of type CustomMenuItem.

A SeparatorMenuItem is a menu item that displays as a visual line to separate menu items. Last in the list is
the Menu class. Because a Menu class is a subclass of MenuItem, it has a getItems().add() method that’s
capable of adding children such as other Menu and MenuItem instances.
Invoking a Selected MenuItem
Now, that you know how to construct a menus and menu items, let’s see how to invoke code that is attached
to a menu item. You’ll be happy to know that you wire-up handler code to a menu item in exactly the same
way that you would wire-up JavaFX buttons, which means that menu items also have a setOnAction()
method. The setOnAction() method receives a functional interface of type EventHandler<ActionEvent>,
which is the handler code that is invoked when the menu item
is selected. Listing B shows two equivalent implementations of action code to be invoked when the Exit
menu item is triggered. The first implementation uses an anonymous inner class, and the second uses Java
8’s lambda expressions.
Listing B. Adding handler code via the setOnAction() method

// Implementation that uses an anonymous inner class
exitMenuItem.setOnAction(new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent t) {
Platform.exit();
}
});
// Implementation that uses lambda expressions
exitMenuItem.setOnAction(ae -> Platform.exit());

Downloaded by MEKALA R (mekalar@bitsathy.ac.in)

lOMoARcPSD|16422156

