
Studocu is not sponsored or endorsed by any college or university

IoT unit2 material

Embedded Systems (Jawaharlal Nehru Technological University, Kakinada)

Studocu is not sponsored or endorsed by any college or university

IoT unit2 material

Embedded Systems (Jawaharlal Nehru Technological University, Kakinada)

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material
https://www.studocu.com/in/document/jawaharlal-nehru-technological-university-kakinada/embedded-systems/iot-unit2-material/51282077?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material
https://www.studocu.com/in/course/jawaharlal-nehru-technological-university-kakinada/embedded-systems/5904965?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material
https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material
https://www.studocu.com/in/document/jawaharlal-nehru-technological-university-kakinada/embedded-systems/iot-unit2-material/51282077?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material
https://www.studocu.com/in/course/jawaharlal-nehru-technological-university-kakinada/embedded-systems/5904965?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

1

UNIT II: Elements of IoT

IoT Hardware Devices
Hardware and software devices combine to form an IoT ecosystem. Hardware is a set of

devices that wire together to serve some functionality. Assume to build a drone, attach

sensors to this drone so that it can take photos of your agricultural crops to keep a track of

their growth. Or a smart watch that keeps a track of your entire schedule, count the number

of steps you take daily, measure your heart pulse. These examples will require connecting

small components, tracking the battery usage. IoT devices are a combination of hardware and

software. The two components integrated and perform a variety of functions.

Building blocks of IoT Hardware

Figure 1: Building blocks of IoT Hardware

1. “Things”: Things in IoT are any devices that are capable of connecting to the internet.

They can transmit, retrieve and store data that they collect from the surrounding. They

include home appliances such as geysers, microwaves, thermostats and refrigerators, etc.

2. Data Acquisition module: As the term suggests, this module is responsible for acquiring

data from the physical surroundings or environment (changes in the temperature, movement,

humidity and pressure) and convert the signal to digital from.

3. Data processing module: This module includes computers that process the data acquired

from the previous module. They analyse the data, store data for future references and other

purposes.

4. Communication module: This is the final building block and this module is responsible

for communication with third party vendors. This could include device to device, device to

server or device to user.

Types of IoT hardware
It is easier to develop an IoT application these days due to the ease in the availability of

boards, Integrated circuits, prototype kits and platforms. These hardware components are low

cost and reliable. they offer flexibility and the choice to design custom sensors with specific

applications. At the same time you can also specify the networking area, data management

and other functionalities as you want. There is a wide range of hardware components to

choose from and based on your requirements you can pick the one that matches your

proptype perfectly.

a. Microcontrollers

i. Microcontrollers are a type of SoC that provides data processing and storage units. They

contain a processor for processing, ROM for storage. When you start building an IoT system,

you must pick a microcontroller that fits your desired purpose. You might have to look at its

datasheet to understand the properties and specifications.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

2

ii. Microcontrollers have properties such as Datapath Bandwidth. Datapath Bandwidth

specifies the number of bits in the registers. More bits, more accurate results.

iii. Microcontrollers connect to all the components of the system and thus they must have

sufficient input/output pins. Microcontrollers must have performance depending on what

system you are developing.

iv. Microcontrollers use a communication protocol to communicate with one another. The

protocols are helpful when you are building bigger systems that require constant

communication with other devices.

b. Single-Board Computer(SBC)
i. Single Board Computers (SBC) that contain all the processing and computing properties of

a computer on a single board. SBCs have memory units to store code, data, input, output units

and microprocessors for computing. It also includes an in-built RAM.

ii. They are a preferred choice in IoT industrial applications as they improve the functionality

of a regular computer, they are easily available and reduce the cost of transportation.

iii. Based on the kind of project you are making, you choose a SBC that fits into all your

needs for that specific project. SBCs are ready made and available in the market at cheap

prices as compared to desktops and computers.

iv. The types of SBCs commonly available in the market are Raspberry Pis, Arduino,

Beagleboard and Qualcomm DragonBoard 410c.

IoT Software
A overview of IoT Softwares are-

1. C & C++: The C programming language has its roots in embedded systems—it even got

its start for programming telephone switches. It’s pretty universal, it can be used almost

everywhere and many programmers already know it. C++ is the object-oriented version of C,

which is a language popular for both the Linux OS and Arduino embedded IoT software

systems. These languages were basically written for the hardware systems, which makes

them so easy to use.

2. Java: While C and C++ are hardware specific, the code in JAVA is more portable. It is

more like a write once and read anywhere you want.

3. Python: There has been a recent surge in the number of python users and has now become

one of the “go-to” languages in Web development. It is slowly spreading to the embedded

control and IoT world—specially the Raspberry Pi processor. Python is an interpreted

language, which is, easy to read, quick to learn and quick to write. Also, it’s a powerhouse for

serving data-heavy applications.

4. B#: Unlike most of the languages mentioned so far, B# was specifically designed for

embedded systems having less memory size.

Arduino

i. Arduino is an open-source hardware and software company that designs and manufactures

single-board microcontrollers and microcontroller kits.

ii. In Arduino, each board has clear markings on the connection pins, sockets and in-circuit

connections. Thus, Arduino boards are easy to work for DIY (do-it-yourself) and simplify the

prototyping of embedded platforms for IoTs.

iii. The Arduino Integrated Development Environment or Arduino Software (IDE) are open

source for easy to program.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

3

iv. Uno is most used and documented board of the whole Arduino family at present. The

board’s analog input pins and PWM pins can connect sensors, actuators and analog circuits.

The board’s digital I/O pins can connect On-Off states, set of On-Off states, digital inputs

from sensors, digital outputs to actuators and other digital circuits.

v. A board with a shield inserted into it makes a wireless connection to a ZigBee, Bluetooth

LE, WiFi, GSM, or RF module or a wired connection to Ethernet LAN for the Internet.

vi. Development boards for IoT devices are the Arduino Ethernet, Arduino Wi-Fi and

Arduino GSM shields. Development boards for the wearable devices are Arduino Gemma,

LilyPad, LilyPad Simple/SimpleSnap and LilyPad USB.

Figure 8.2 shows architecture of Arduino Fio board with Ethernet shield.

Figure 2: Architecture of Arduino Fio board ford IoT devices development

Arduino types

Arduino Uno (R3), Arduino Nano, Arduino Micro, Arduino Due, LilyPad Arduino Board,

Arduino Bluetooth, Arduino Fio, Arduino Diecimila, RedBoard Arduino Board, Arduino

Mega (R3) Board Arduino Leonardo Board, Arduino Robot, Arduino Esplora, Arduino Pro

Mic Arduino Ethernet, Arduino Zero, Fastest Arduino Board

https://www.elprocus.com/different-types-of-arduino-boards/

https://www.elprocus.com/different-types-of-arduino-boards/

Raspberry Pi

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi

runs various flavours of Linux and can perform almost all tasks that a normal desktop

computer can do, In addition, Raspberry Pi also allows interfacing sensors and actuators

through the general purpose I/O pins. Since Raspberry Pi runs Linux operating system, it

supports Python "out of the box".

The different types of raspberry pi models are following

Raspberry Pi 1 model B

Raspberry Pi 1 model A

Raspberry Pi 1 model B+

Raspberry Pi 1model A+

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.elprocus.com/different-types-of-arduino-boards/
https://www.elprocus.com/different-types-of-arduino-boards/
https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

4

Raspberry Pi Zero

Raspberry Pi 2

Raspberry Pi 3 model B

Raspberry Pi Zero W

Figure 3: Raspberry Pi Model B+ layout

Types comparison https://www.efxkits.us/different-types-of-raspberry-pi-boards-its-

application/

Other information https://en.wikipedia.org/wiki/Raspberry_Pi

i. Raspberry Pi is based on an ARM processor. The latest version of Raspberry Pi (Model B, Revision 2)

comes with 700 MHz Low Power ARM 1176JZ-F processor and 512 MB SDRAM,

ii. USB Ports : Raspberry Pi comes with two USB 2.0 ports. The USB ports on Raspberry Pi can provide a

current upto 100mA. For connecting devices that draw current more than 100mA an external USB

powered hub is required.

iii. Ethernet Ports : Raspberry Pi comes with a standard RJ45 Ethernet port. You can connect an

Ethernet cable or a USB Wifi adapter to provide Internet connectivity.

iv. HDMI Output : The HDMI port on Raspberry Pi provides both video and audio output. You can

connect the Raspberry Pi to a monitor using an EIDMI cable.

v. Composite Video Output : Raspberry Pi comes with a composite video output.

vi. Audio Output : Raspberry Pi has a 3.5mm audio output jack. The audio quality from this jack is

inferior to the HDMI output.

vii. GPIO Pins : Raspberry N comes with a number of general purpose input output pins. There are four

types of pins on Raspberry Pi - true GPIO pins. I2C interface pins, SPI interface pins and serial Rx and Tx

pins.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.efxkits.us/different-types-of-raspberry-pi-boards-its-application/
https://www.efxkits.us/different-types-of-raspberry-pi-boards-its-application/
https://en.wikipedia.org/wiki/Raspberry_Pi

5

a. Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for

communication with serial peripherals.

b. SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating with

one or more peripheral devices. In an SPI connection, there is one master device and one or more

peripheral devices. There are five pins on Raspberry Pi for SPI interface:

 MISO (Master In Slave Out) : Master line for sending data to the peripherals.

 MOSI (Master Out Slave In) : Slave line for sending data to the master.

 SCI (Serial Clock) : Clock generated by master to synchronize data transmission

 CEO (Chip Enable 0) : To enable or disable devices.

 CEO (Chip Enable 1) : To enable or disable devices,

c. I2C: The. 12C interface pins on Raspberry Pi allow you to connect hardware modules. 12C interface

allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line).

viii. Display Serial Interface (1351) The DSI interface can be used to connect an LCD panel to

Raspberry Pi.

ix. Camera Serial interface (CSI) : The CSI interface can be used to connect a camera module to

Raspberry Pi.

x. Status LEDs : Raspberry Pi has live status LEDs, Table 7.1 lists Raspberry Pi status LEDs and their

functions.

xi. SD Card Slot : Raspberry Pi does not have a built in operating system and storage. You can plug-in

an SD card loaded with a Linux image to the SD card slot. Appendix-A provides instructions on setting up

New Out-of-the-Box Software (NOOBS) on Raspberry Pi. You will require at least an 80H SD card

for setting up NOOBS,

xii. Power Input : Raspberry Pi has a micro-USB connector for power input.

ARM Cortex-M class processor

Over the years, ARM has developed quite a number of different processor products. In the

following diagram (Figure 4), the ARM processors are divided between the classic ARM

processors and the newer Cortex processor product range. In addition, these processors are

divided into three groups:

Application Processors – High-end processors for mobile computing, smart phone, servers,

etc. These processors run at higher clock frequency (over 1GHz), and support Memory

Management Unit (MMU), which is required for full feature OS such as Linux, Android, MS

Windows and mobile OSs. If you are planning to develop a product that requires one of these

OSs, you need to use an application processor.

Real-time Processors – These are very high-performance processors for real-time

applications such as hard disk controller, automotive power train and base band control in

wireless communications. Most of these processors do not have MMU, and usually have

Memory Protection Unit (MPU), cache, and other memory features designed for industrial

applications. They can run at a fairly high clock frequency (e.g. 200MHz to >1GHz) and have

very low response latency. Although these processors cannot run full versions of Linux or

Windows, there are plenty of Real Time Operating Systems (RTOS) that can be used with

these processors.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

6

Microcontroller Processors – These processors are usually designed to have a much lower

silicon area, and much high-energy efficiency. Typically, they have shorter pipeline, and

usually lower maximum frequency (although you can find some of these processors running

at over 200MHz). At the same time, the newer Cortex-M processor family is designed to be

very easy to use; therefore, they are very popular in the microcontroller and deeply embedded

systems market.

Today, there are eight members in the ARM Cortex-M processor family. Different processors

can have different instruction set support, system features and performance.

Figure 4: ARM processor family

The Cortex-M processor family

The Cortex-M processor family is more focused on the lower end of the performance scale.

However, these processors are still quite powerful when compared to other typical processors

used in most microcontrollers. For example, the Cortex-M4 and Cortex-M7 processors are

being used in many high-performance microcontroller products, with maximum clock

frequency going up to 400MHz. Of course, performance is not the only factor when selecting

a processor. In many applications, low power and cost are the key selection criteria.

Therefore, the Cortex-M processor family contains various products to address different

needs:

Cortex-M0 A very small processor (starting from 12K gates) for low cost, ultra-low power

microcontrollers and deeply embedded applications.

Cortex-M0+ The most energy-efficient processor for small embedded system. Similar size

and programmer’s model to the Cortex-M0 processor, but with additional features like single

cycle I/O interface and vector table relocations.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

7

Cortex-M1 A small processor design optimized for FPGA designs and provides Tightly

Coupled Memory (TCM) implementation using memory blocks on the FPGAs. Same

instruction set as the Cortex-M0.

Cortex-M3 A small but powerful embedded processor for low-power microcontrollers that

has a rich instruction set to enable it to handle complex tasks quicker. It has a hardware

divider and Multiply-Accumulate (MAC) instructions. In addition, it also has comprehensive

debug and trace features to enable software developers to develop their applications quicker.

Cortex-M4 It provides all the features on the Cortex-M3, with additional instructions target

at Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data (SIMD)

and faster single cycle MAC operations. In addition, it also have an optional single precision

floating point unit that support IEEE 754 floating point standard.

Cortex-M7 High-performance processor for high-end microcontrollers and processing

intensive applications. It has all the ISA features available in Cortex-M4, with additional

support for double-precision floating point, as well as additional memory features like cache

and Tightly Coupled Memory (TCM).

Arm Cortex-M0 Processor Architecture

The ARMv6-M architecture that the Cortex-M0 processor implemented covers a number of

different areas. To use a Cortex-M0 device with C language, you only need to know the

memory map, the peripheral programming information, the exception handling mechanism,

and part of the programmer’s model. Most users of the Cortex-M0 processor will work in C

language; as a result, the underlying programmer’s model will not be visible in the program

code. However, it is still useful to know about the details, as this information is often needed

during debugging and it will also help readers to understand the rest of this book.

Programmer’s Model

1. Operation Modes and States

i. The Cortex-M0 processor has two operation modes (Thread mode or the Handler mode)

and two states (Thumb and Deburg stated) as in the Figure 5.

Figure 5: Processor modes and states in the Cortex-M0 processor

ii. When the processor is running a program, it is in the Thumb state. In this state, it can be

either in the Thread mode or the Handler mode. Both modes are almost the same. The only

difference is Thread mode have a special register called CONTROL.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

8

iii. The Debug state is used for debugging operation only. Halting the processor, stops the

instruction execution and enter debug state. This state allows the debugger to access or

change the processor register values.

iv. The debugger can access system memory locations in either the Thumb state or the Debug

state.

v. When the processor is powered up, it will be running in the Thumb state and Thread mode

by default.

2. Registers and Special Registers

i. To perform data processing and controls, a number of registers are required inside the

processor core. The data have to be loaded from the memory to a register in the register bank

then processed inside the processor, and then written back to the memory if needed. This is

commonly called as “load-store architecture.”
ii. By having a sufficient number of registers in the register bank, this mechanism is easy to

use. The register bank contains sixteen 32-bit registers. 13 are general-purpose registers,

remaining have special uses as shown in the Figure 6.

Figure 6: Registers in the Cortex-M0 processor

R0-R12: Registers R0 to R12 are for general uses. The Thumb instructions can only access

low registers (R0 to R7). Some instructions like MOV (move) can use all registers. The initial

values of R0 to R12 at reset are undefined.

R13, Stack Pointer (SP): R13 is the stack pointer. It is used for accessing the stack memory

via PUSH and POP operations. There are physically two different stack pointers in Cortex-

M0. The main stack pointer (MSP) is used for running unusual handlers mode and process

stack pointer (PSP) is used for usual Thread mode.

R14, Link Register (LR): R14 is the Link Register. The Link Register is used for storing the

return address of a function call.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

9

R15, Program Counter (PC): R15 is the Program Counter. It is readable and writeable. Call

the Program Counter, using either “R15” or “PC,” in either upper or lower case (e.g., “r15” or
“pc”).
xPSR, combined Program Status Register
The combined Program Status Register provides information about program execution and

the ALU flags. It is consists of the following three Program Status Registers (PSRs) as in

Figure 7:

• Application PSR (APSR): Contains the ALU flags: N (negative flag), Z (zero flag), C (carry
or borrow flag), and V (overflow flag). These bits are at the top 4 bits of the APSR.

• Interrupt PSR (IPSR): Contains the current executing interrupt service routine (ISR)

number.

• Execution PSR (EPSR): Contains the T-bit, which indicates that the processor is in the

Thumb state.

Figure 7: APSR, IPSR, and EPSR.

These three registers can be accessed as one register called xPSR as given in Figure 8.

Figure 8: xPSR

PRIMASK: Interrupt Mask Special Register

The PRIMASK register is a 1-bit-wide interrupt mask register as in Figure 9. When set, it

blocks all interrupts apart from the non-maskable interrupt (NMI) and the hard fault

exception. Effectively it raises the current interrupt priority level to 0, which is the highest

value for a programmable exception. The PRIMASK register can be accessed using special

register access instructions (MSR, MRS) as well as using an instruction called the Change

Processor State (CPS). This is commonly used for handling time-critical routines.

Figure 9: PRIMASK

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

10

CONTROL: Special Register

i. Physically there are two stack pointers in the Cortex-M0 processor, but only one of them is

used at one time, depending on the current value of the CONTROL register as shown in the

Figure 10.

Figure 10: CONTROL

ii. After reset, the main stack pointer (MSP) is used, but can be switched to the process stack

pointer (PSP) in Thread mode by setting bit [1] in the CONTROL register as shown in the

Figure 11.

iii. During running of an exception handler (when the processor is in Handler mode), only the

MSP is used, and the CONTROL register reads as zero.

iv. Bit 0 of the CONTROL register is reserved to maintain compatibility with the Cortex-M3

processor.

Figure 11: Stack pointer selection

3. Memory System Overview

The Cortex-M0 processor has 4 GB of memory address space. The memory space is

architecturally defined as a number of regions, with each region having a recommended

usage to help software porting between different devices as shown in the Figure 12.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

11

Figure 12: Memory map

Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as

temporary data storage. The main element of stack memory operation is a register called the

stack pointer. The stack pointer is adjusted automatically each time a stack operation is

carried out. In common terms, storing data to the stack is called pushing (using the PUSH

instruction) and restoring data from the stack is called popping (using the POP instruction) as

shown in the Figure 13.

Figure 13: Stack PUSH and POP in the Cortex-M0 processor.

4. Exceptions and Interrupts

i. Exceptions are events that cause change to program control: instead of continuing program

execution, the processor suspends the current executing task and executes a part of the

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

12

program code called the exception handler. After the exception handler is completed, it will

then resume the normal program execution.

ii. There are various types of exceptions. Interrupts are a subset of exceptions. They are 32

external interrupts (commonly referred as interrupt request, IRQs) and an additional special

interrupt called the nonmaskable interrupt (NMI).

iii. The exception handlers for interrupt events are commonly known as interrupt service

routines (ISRs).

Nested Vectored Interrupt Controller (NVIC)

To prioritize the interrupt requests and handle other exceptions, the Cortex-M0 processor has

a built-in interrupt controller called the Nested Vectored Interrupt Controller (NVIC). The

interrupt management function is controlled by a number of programmable registers in the

NVIC. These registers are memory mapped, with the addresses located within the System

Control Space (SCS) as illustrated in Figure 12.

The NVIC supports a number of features:

• Flexible interrupt management: each external interrupt can be enabled or disabled. It can
also accept exception requests at external peripheral, at 1cycle.

• Nested interrupt support: each exception has a priority level. The priority level can be fixed
or programmable.

• Vectored exception entry: When an exception occurs, the processor will need to locate the
starting point of the corresponding exception handler.

• Interrupt masking

Interrupt Masking

The NVIC in the Cortex-M0 processor provides an interrupt masking feature via the

PRIMASK special register. This can disable all exceptions except hard fault and NMI (non-

maskable interrupt, hardware failure). This masking is useful for operations that should not

be interrupted such as time critical control tasks.

5. System Control Block (SCB)

Apart from the NVIC, the System Control Space (SCS) also contains a number of other

registers for system management. This is called the System Control Block (SCB). It contains

registers for sleep mode features and system exception configurations, as well as a register

containing the processor identification code.

Block Diagram

i. A simplified block diagram of the Cortex-M0 is shown in Figure 14. The processor core

contains the register banks, ALU, data path, and control logic. It is a three stage pipeline

design with fetch stage, decode stage, and execution stage. The register bank has sixteen 32-

bit registers. A few registers have special usages.

ii. The Nested Vectored Interrupt Controller (NVIC) accepts up to 32 interrupt request signals

and a non-maskable interrupt (NMI) input.

iii. It contains the functionality required for comparing priority between interrupt requests

and the current priority level so that nested interrupts can be handled automatically.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

13

iv. If an interrupt is accepted, it communicates with the processor so that the processor can

execute the correct interrupt handler. The Wakeup Interrupt Controller (WIC) is an optional

unit.

iv. In low-power applications, the microcontroller can enter standby state with most of the

processor powered down. In this situation, the WIC can perform the function of interrupt

masking.

v. When an interrupt request is detected, the WIC informs the power management to power

up the system so that the NVIC and the processor core can then handle the rest of the

interrupt processing. The debug subsystem contains various functional blocks to handle

debug control, program breakpoints, and data watch points.

vi. The serial wire protocol is a newer communication protocol that only requires two wires,

but it can handle the same debug functionalities as JTAG (Joint Test Action Group). The

internal bus system, the data path in the processor core, and the AHB LITE bus interface are

all 32 bits wide.

vii. AHB-Lite is an on-chip bus protocol used in many ARM processors. This bus protocol is

part of the Advanced Microcontroller Bus Architecture (AMBA) specification, a bus

architecture developed by ARM that is widely used in the IC design industry.

Figure 14: Simplified block diagram of the Cortex-M0 processor

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

CHAPTER 5

Instruction Set

Background of ARM and Thumb Instruction Set

The early ARM processors use a 32-bit instruction set called the ARM instructions. The
32-bit ARM instruction set is powerful and provides good performance, but at the same time
it often requires larger program memory when compared to 8-bit and 16-bit processors. This
was and still is an issue, as memory is expensive and could consume a considerable amount
of power.

In 1995, ARM introduced the ARM7TDMI processor, adding a new 16-bit instruction set
called the Thumb instruction set. The ARM7TDMI supports both ARM instructions and
Thumb instructions, and a state-switching mechanism is used to allow the processor to decide
which instruction decode scheme should be used (Figure 5.1). The Thumb instruction set
provides a subset of the ARM instructions. By itself it can perform most of the normal
functions, but interrupt entry sequence and boot code must still be in ARM state. Nevertheless,
most processing can be carried out using Thumb instructions and interrupt handlers could
switch themselves to use the Thumb state, so the ARM7TDMI processor provides excellent
code density when compared to other 32-bit RISC architectures.

Incoming
Instructions

Instruction decode
format selection

.----------a

Thumb remap
to ARM

T bit (0 = ARM,
1 = Thumb)

Figure 5.1:

ARM
instruction
decoder

Execution
stage

ARM7TDMI design supports both ARM and the Thumb instruction set.

Thumb code provides a code size reduction of approximately 30% compared to the equivalent
ARM code. However, it has some impact on the performance and can reduce the performance
by 20%. On the other hand, in many applications, the reduction of program memory size and
The Definitive Guide to the ARM Cortex-MO. DOI: 10.1016/B978-0-12-385477-3.10005-9
Copyright © 2011 Man Cheung Joseph Yiu. Published by Elsevier Joe. All rights reserved.

73

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

Additional data

Embedded Systems

An Embedded System is a computer system that has computer hardware and software

embedded to perform specific tasks. In contrast to general purpose computers or personal

computers (PCs)' wbich can perform various types of tasks, embedded systems are designed

to perform a specific set of tasks. Key components of an embedded system include.

microprocessor or microcontroller, memory (RAM, ROM, cache), networking units

(Etllemet, WiFi adapters), input/output units (display, keyboard, etc.) and storage (such as

Hash memory). Some embedded systems have specialized processors such as digital signal

processors (DSPs), graphics processors and application specific processors. Embedded

systems run embedded operating systems such as real-time operating systems (RTOS).

Embedded systems range from low-cost miniaturized devices such as digital watches to

devices such as digital cameras, point of vending machines, appliances (such as washing

machines), etc.

IoT Hardware Devices

1. Sensors: A sensor is an IoT device that senses physical changes in the environment and

sends the data for manipulation via a network. Clouds store the data for future references.

Sensors monitor data and collect information constantly.

2. Microcontrollers: A microcontroller is a small computer that is capable of performing

operations. It sits on a semiconductor integrated circuit chip. Microcontollers usually operate

on a single function and hence differ from regular computers. They perform a variety of tasks

in a relatively simpler manner.

3. Wearable devices: Wearable devices are a benchmark revolution of the IoT industry. These

are Iot devices that humans can wear on their bodies to regulate and perform a variety of

tasks. These wearables are capable of tracking glucose levels, monitor heart attack risks,

coagulation and asthma monitoring, daily step and calorie consumption tracking.

4. Basic devices: Traditional computers such as desktops, tablets and cellphones are still an

integral part of any IoT ecosystem. Desktops offer users with simple access to a lot of

information and cell phones allow remote access to Iot devices using APIs.

5. Datasheets: Datasheets give the details about the functionality of any hardware

components. It is important to study the datasheet of any hardware before making a purchase

to make sure you are buying the right product.

Datasheets offer you detailed information on the parameters of the hardware, its physical

size, different voltage and electrical parameters, maximum current usage and the number of

input/output pins. Datasheets are highly useful as they give you all the information you need

before buying complicated hardware components.

6. Integrated circuits: Integrated circuits are chips. They are microcontrollers. You can buy

empty chips in the market and download any kind of design into the chip. They are made

using Silicon and it is packaged into shapes of rectangles. These chips contain complicated

logic circuits, gates, registers, switches, I/O terminals and flip flops.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Integrated circuits do a variety of functions, they can perform arithmetic and logical

calculations. They act as processors too. They contain binary coded information which is

programmed to perform a set of tasks.

Standard chips are available in the market that perform a fixed set of operations. You can also

construct chips to perform your desired set of functions and these are known as custom made

chips.

IoT Hardware Providers
Various companies have come up with their own personalized IoT hardware and software

and many emerging companies are adapting to these policies. However, the most common Iot

hardware providers are listed below:

a. Adafruit is best if you want to get hands-on experience with IoT. The company sells IoT

DIY kits with an online guide to help you through the initial setting up. You can interact,

manipulate and store your data.

b. Raspberry Pi is best at student level to get hands-on experience with IoT. You can interact,

manipulate and store your data.

b. Arduino, the company brands microcontrollers, IoT kits and software tools.

c. Lantronix provides solutions for the IoT such as smart hardware, networking, engineering

and artificial intelligence.

d. Espressif can interconnect with the system to provide wifi and bluetooth. It has high level

integration. It uses low power and has a robust design.

Downloaded by gopal krishna (gopal.ngk@gmail.com)

lOMoARcPSD|28901082

