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UNIT II: Elements of IoT

IoT Hardware Devices

Hardware and software devices combine to form an IoT ecosystem. Hardware is a set of
devices that wire together to serve some functionality. Assume to build a drone, attach
sensors to this drone so that it can take photos of your agricultural crops to keep a track of
their growth. Or a smart watch that keeps a track of your entire schedule, count the number
of steps you take daily, measure your heart pulse. These examples will require connecting
small components, tracking the battery usage. IoT devices are a combination of hardware and
software. The two components integrated and perform a variety of functions.

Building blocks of IoT Hardware

? Thing ' Data ~ Data Communications
Acquisition Mode Processing Mode Module

Any object you Obtain physical Data processing, Contacting party

want to signals to convert data storing and vendors that can

authorise or to digital edge computing be local or
monitor in cloud

Figure 1: Building blocks of IoT Hardware
1. “Things”: Things in IoT are any devices that are capable of connecting to the internet.

They can transmit, retrieve and store data that they collect from the surrounding. They
include home appliances such as geysers, microwaves, thermostats and refrigerators, etc.

2. Data Acquisition module: As the term suggests, this module is responsible for acquiring
data from the physical surroundings or environment (changes in the temperature, movement,
humidity and pressure) and convert the signal to digital from.

3. Data processing module: This module includes computers that process the data acquired
from the previous module. They analyse the data, store data for future references and other
purposes.

4. Communication module: This is the final building block and this module is responsible
for communication with third party vendors. This could include device to device, device to
server or device to user.

Types of IoT hardware
It is easier to develop an IoT application these days due to the ease in the availability of

boards, Integrated circuits, prototype kits and platforms. These hardware components are low
cost and reliable. they offer flexibility and the choice to design custom sensors with specific
applications. At the same time you can also specify the networking area, data management
and other functionalities as you want. There is a wide range of hardware components to
choose from and based on your requirements you can pick the one that matches your
proptype perfectly.

a. Microcontrollers

i. Microcontrollers are a type of SoC that provides data processing and storage units. They
contain a processor for processing, ROM for storage. When you start building an IoT system,
you must pick a microcontroller that fits your desired purpose. You might have to look at its
datasheet to understand the properties and specifications.
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ii. Microcontrollers have properties such as Datapath Bandwidth. Datapath Bandwidth
specifies the number of bits in the registers. More bits, more accurate results.

iii. Microcontrollers connect to all the components of the system and thus they must have
sufficient input/output pins. Microcontrollers must have performance depending on what
system you are developing.

iv. Microcontrollers use a communication protocol to communicate with one another. The
protocols are helpful when you are building bigger systems that require constant
communication with other devices.

b. Single-Board Computer(SBC)
1. Single Board Computers (SBC) that contain all the processing and computing properties of

a computer on a single board. SBCs have memory units to store code, data, input, output units
and microprocessors for computing. It also includes an in-built RAM.

i1. They are a preferred choice in IoT industrial applications as they improve the functionality
of a regular computer, they are easily available and reduce the cost of transportation.

i1i. Based on the kind of project you are making, you choose a SBC that fits into all your
needs for that specific project. SBCs are ready made and available in the market at cheap
prices as compared to desktops and computers.

iv. The types of SBCs commonly available in the market are Raspberry Pis, Arduino,
Beagleboard and Qualcomm DragonBoard 410c.

IoT Software

A overview of IoT Softwares are-

1. C & C++: The C programming language has its roots in embedded systems—it even got
its start for programming telephone switches. It’s pretty universal, it can be used almost
everywhere and many programmers already know it. C++ is the object-oriented version of C,
which is a language popular for both the Linux OS and Arduino embedded IoT software
systems. These languages were basically written for the hardware systems, which makes
them so easy to use.

2. Java: While C and C++ are hardware specific, the code in JAVA is more portable. It is
more like a write once and read anywhere you want.

3. Python: There has been a recent surge in the number of python users and has now become
one of the “go-to” languages in Web development. It is slowly spreading to the embedded
control and IoT world—specially the Raspberry Pi processor. Python is an interpreted
language, which is, easy to read, quick to learn and quick to write. Also, it’s a powerhouse for
serving data-heavy applications.

4. B#: Unlike most of the languages mentioned so far, B# was specifically designed for
embedded systems having less memory size.

Arduino

1. Arduino is an open-source hardware and software company that designs and manufactures
single-board microcontrollers and microcontroller kits.

ii. In Arduino, each board has clear markings on the connection pins, sockets and in-circuit
connections. Thus, Arduino boards are easy to work for DIY (do-it-yourself) and simplify the
prototyping of embedded platforms for IoTs.

iii. The Arduino Integrated Development Environment or Arduino Software (IDE) are open
source for easy to program.
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iv. Uno is most used and documented board of the whole Arduino family at present. The
board’s analog input pins and PWM pins can connect sensors, actuators and analog circuits.
The board’s digital I/O pins can connect On-Off states, set of On-Off states, digital inputs
from sensors, digital outputs to actuators and other digital circuits.

v. A board with a shield inserted into it makes a wireless connection to a ZigBee, Bluetooth
LE, WiFi, GSM, or RF module or a wired connection to Ethernet LAN for the Internet.

vi. Development boards for IoT devices are the Arduino Ethernet, Arduino Wi-Fi and
Arduino GSM shields. Development boards for the wearable devices are Arduino Gemma,
LilyPad, LilyPad Simple/SimpleSnap and LilyPad USB.

Figure 8.2 shows architecture of Arduino Fio board with Ethernet shield.

' Digital 7 Diait: i T
Vi 2 12 Digital 1O pins I'x [Rx
o] | i || | [ole ]
UART
Reset
USB EEPROM SRAM ik
Mini 1kB 2kB
6-1CSP
Pins
1'—-\10{” al Flash Microcontroller ATMega328P/8 MHz
Power Supply 32 kB
[Reset [33v | sv]onp [anp | vin | 6-Analog Inputs

Figure 2: Architecture of Arduino Fio board ford IoT devices development

Arduino types

Arduino Uno (R3), Arduino Nano, Arduino Micro, Arduino Due, LilyPad Arduino Board,
Arduino Bluetooth, Arduino Fio, Arduino Diecimila, RedBoard Arduino Board, Arduino
Mega (R3) Board Arduino Leonardo Board, Arduino Robot, Arduino Esplora, Arduino Pro
Mic Arduino Ethernet, Arduino Zero, Fastest Arduino Board
https://www.elprocus.com/different-types-of-arduino-boards/
https://www.elprocus.com/different-types-of-arduino-boards/

Raspberry Pi

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi
runs various flavours of Linux and can perform almost all tasks that a normal desktop
computer can do, In addition, Raspberry Pi also allows interfacing sensors and actuators
through the general purpose I/O pins. Since Raspberry Pi runs Linux operating system, it
supports Python "out of the box".

The different types of raspberry pi models are following

Raspberry Pi 1 model B

Raspberry Pi 1 model A

Raspberry Pi 1 model B+

Raspberry Pi 1model A+
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Raspberry Pi Zero
Raspberry Pi 2
Raspberry Pi 3 model B
Raspberry Pi Zero W

40pins: 28x GPIO, 12C, SPI, UART

2x USB 2.0

Raspberry Pi 3 Model B+
(c) Raspberry Pi 2017

Wifi / BT
Dual band

CPU/GPU
Broadcom
BCM2837B0

2x USB 2.0

1024 MB DDRA|

microSD slot
on bottom side

GigaEthernet
RJ45

Camera

Status LED's

PWR IN

Video+audio

HDM|

Ethernet

HDMI out
Power in
4 poles jack

Figure 3: Raspberry Pi Model B+ layout

Types comparison https://www.efxkits.us/different-types-of-raspberry-pi-boards-its-

application/
Other information https://en.wikipedia.org/wiki/Raspberry Pi

1. Raspberry Pi is based on an ARM processor. The latest version of Raspberry Pi (Model B, Revision 2)
comes with 700 MHz Low Power ARM 1176JZ-F processor and 512 MB SDRAM,

1. USB Ports : Raspberry Pi comes with two USB 2.0 ports. The USB ports on Raspberry Pi can provide a
current upto 100mA. For connecting devices that draw current more than 100mA an external USB
powered hub is required.

iii. Ethernet Ports : Raspberry Pi comes with a standard RJ45 Ethernet port. You can connect an
Ethernet cable or a USB Wifi adapter to provide Internet connectivity.

iv. HDMI Output : The HDMI port on Raspberry Pi provides both video and audio output. You can
connect the Raspberry Pi to a monitor using an EIDMI cable.

v. Composite Video Output : Raspberry Pi comes with a composite video output.

vi. Audio Output : Raspberry Pi has a 3.5mm audio output jack. The audio quality from this jack is
inferior to the HDMI output.

vii. GPIO Pins : Raspberry N comes with a number of general purpose input output pins. There are four
types of pins on Raspberry Pi - true GPIO pins. I2C interface pins, SPI interface pins and serial Rx and Tx
pins.
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a. Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for
communication with serial peripherals.
b. SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating with
one or more peripheral devices. In an SPI connection, there is one master device and one or more
peripheral devices. There are five pins on Raspberry Pi for SPI interface:

e MISO (Master In Slave Out) : Master line for sending data to the peripherals.

e MOSI (Master Out Slave In) : Slave line for sending data to the master.

e SCI (Serial Clock) : Clock generated by master to synchronize data transmission
CEO (Chip Enable 0) : To enable or disable devices.
CEO (Chip Enable 1) : To enable or disable devices,
c. 12C: The. 12C interface pins on Raspberry Pi allow you to connect hardware modules. 12C interface
allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line).
viil. Display Serial Interface (1351) The DSI interface can be used to connect an LCD panel to
Raspberry Pi.
ix. Camera Serial interface (CSI) : The CSI interface can be used to connect a camera module to
Raspberry Pi.
x. Status LEDs : Raspberry Pi has live status LEDs, Table 7.1 lists Raspberry Pi status LEDs and their
functions.
xi. SD Card Slot : Raspberry Pi does not have a built in operating system and storage. You can plug-in
an SD card loaded with a Linux image to the SD card slot. Appendix-A provides instructions on setting up
New Out-of-the-Box Software (NOOBS) on Raspberry Pi. You will require at least an 80H SD card
for setting up NOOBS,
xii. Power Input : Raspberry Pi has a micro-USB connector for power input.

ARM Cortex-M class processor

Over the years, ARM has developed quite a number of different processor products. In the
following diagram (Figure 4), the ARM processors are divided between the classic ARM
processors and the newer Cortex processor product range. In addition, these processors are
divided into three groups:

Application Processors — High-end processors for mobile computing, smart phone, servers,
etc. These processors run at higher clock frequency (over 1GHz), and support Memory
Management Unit (MMU), which is required for full feature OS such as Linux, Android, MS
Windows and mobile OSs. If you are planning to develop a product that requires one of these
OSs, you need to use an application processor.

Real-time Processors — These are very high-performance processors for real-time
applications such as hard disk controller, automotive power train and base band control in
wireless communications. Most of these processors do not have MMU, and usually have
Memory Protection Unit (MPU), cache, and other memory features designed for industrial
applications. They can run at a fairly high clock frequency (e.g. 200MHz to >1GHz) and have
very low response latency. Although these processors cannot run full versions of Linux or
Windows, there are plenty of Real Time Operating Systems (RTOS) that can be used with
these processors.

This document is available free of charge on g stUdocu

Downloaded by gopal krishna (gopal.ngk@gmail.com)


https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=iot-unit2-material

Microcontroller Processors — These processors are usually designed to have a much lower
silicon area, and much high-energy efficiency. Typically, they have shorter pipeline, and
usually lower maximum frequency (although you can find some of these processors running
at over 200MHz). At the same time, the newer Cortex-M processor family is designed to be
very easy to use; therefore, they are very popular in the microcontroller and deeply embedded
systems market.

Today, there are eight members in the ARM Cortex-M processor family. Different processors
can have different instruction set support, system features and performance.

Application
Processors
(with MMU,
.Cortex-A73 support Linux,
System capability & - . Cortex-A72 MS mobile OS)
performance
Cortex-A57 Cortex-A35
. Cortex-A53 Conex-532
Cortex-A15 . ' D
Cortex-A17
. i AL2 Real Time
Cortex-A9 Processors
Cortex-A7
Cortex-A8 -
Cortex-R52
Cortex-AS5 Cortex-R8
Cortex-R7
ARM11™ C RS
M series = Qrieks Cortex-M7
ARMS26 Cortex-R4 - Microcontrollers
) [ cortex-m33 and deeply
. Cortex-M4 embedded
ARM920T™, | .cm o
™ .| ex-|
ARM940T - ARRID46™, Cortex-M3 .
™ ]
ARM966 Cortex:Mo  Cortex-Mo+
Cortex-M1
ARM7™ series (FPGA)
[ Classic ARM Processors } [ ARM Cortex Processors ]

Figure 4: ARM processor family

The Cortex-M processor family

The Cortex-M processor family is more focused on the lower end of the performance scale.
However, these processors are still quite powerful when compared to other typical processors
used in most microcontrollers. For example, the Cortex-M4 and Cortex-M7 processors are
being used in many high-performance microcontroller products, with maximum clock
frequency going up to 400MHz. Of course, performance is not the only factor when selecting
a processor. In many applications, low power and cost are the key selection criteria.
Therefore, the Cortex-M processor family contains various products to address different
needs:

Cortex-M0 A very small processor (starting from 12K gates) for low cost, ultra-low power
microcontrollers and deeply embedded applications.

Cortex-M0+ The most energy-efficient processor for small embedded system. Similar size
and programmer’s model to the Cortex-MO processor, but with additional features like single
cycle I/O interface and vector table relocations.
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Cortex-M1 A small processor design optimized for FPGA designs and provides Tightly
Coupled Memory (TCM) implementation using memory blocks on the FPGAs. Same
instruction set as the Cortex-MO0.

Cortex-M3 A small but powerful embedded processor for low-power microcontrollers that
has a rich instruction set to enable it to handle complex tasks quicker. It has a hardware
divider and Multiply-Accumulate (MAC) instructions. In addition, it also has comprehensive
debug and trace features to enable software developers to develop their applications quicker.
Cortex-M4 It provides all the features on the Cortex-M3, with additional instructions target
at Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data (SIMD)
and faster single cycle MAC operations. In addition, it also have an optional single precision
floating point unit that support IEEE 754 floating point standard.

Cortex-M7 High-performance processor for high-end microcontrollers and processing
intensive applications. It has all the ISA features available in Cortex-M4, with additional
support for double-precision floating point, as well as additional memory features like cache
and Tightly Coupled Memory (TCM).

Arm Cortex-M0 Processor Architecture

The ARMv6-M architecture that the Cortex-MO processor implemented covers a number of
different areas. To use a Cortex-MO device with C language, you only need to know the
memory map, the peripheral programming information, the exception handling mechanism,
and part of the programmer’s model. Most users of the Cortex-MO processor will work in C
language; as a result, the underlying programmer’s model will not be visible in the program
code. However, it is still useful to know about the details, as this information is often needed
during debugging and it will also help readers to understand the rest of this book.

Programmer’s Model

1. Operation Modes and States

i. The Cortex-MO processor has two operation modes (Thread mode or the Handler mode)
and two states (Thumb and Deburg stated) as in the Figure 5.

e Thumb State \\

Handler Mode

Executing exception
handler

Exception
request

Debug State

Debug

(The processor stop
executing instruction)

Thread Mode

-

Executing normal
code

Exception
return

J

Debug operation — Only
possible when debugger is
connected.

Normal operation — the processor is
running Thumb/Thumb-2 instructions

Figure 5: Processor modes and states in the Cortex-MO processor

ii. When the processor is running a program, it is in the Thumb state. In this state, it can be
either in the Thread mode or the Handler mode. Both modes are almost the same. The only
difference is Thread mode have a special register called CONTROL.
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iii. The Debug state is used for debugging operation only. Halting the processor, stops the
instruction execution and enter debug state. This state allows the debugger to access or
change the processor register values.

iv. The debugger can access system memory locations in either the Thumb state or the Debug
state.

v. When the processor is powered up, it will be running in the Thumb state and Thread mode
by default.

2. Registers and Special Registers
i. To perform data processing and controls, a number of registers are required inside the

processor core. The data have to be loaded from the memory to a register in the register bank
then processed inside the processor, and then written back to the memory if needed. This is
commonly called as “load-store architecture.”

i1. By having a sufficient number of registers in the register bank, this mechanism is easy to
use. The register bank contains sixteen 32-bit registers. 13 are general-purpose registers,
remaining have special uses as shown in the Figure 6.

a B

Register bank
| RO | General Purpose Register |
| R1 | General Purpose Register /f Special Registers )
| R2 | General Purpose Register
| R3 | Garerhl Piupese Redsie: Program Status Registers
X Low Registers
| R4 | General Purpose Register
| RS | General Purpose Register [ APSR | EPSR | IPSR |
| R6 | General Purpose Register Application Execution Interrupt
| R7 | General Purpose Register _J PSR PSR PSR
| R8 | General Purpose Register )
| R9 | General Purpose Register Interrupt Mask Register
| R10 | General Purpose Register > High Registers
| R11 | General Purpose Register Stack definition
| R12 | General Purpose Register )
[ R13(banked) Stack Pointer (SP) L /
| R14 Link Register (LR)
| R15 | Program Counter (PC)
Main Stack Pointer
Processs Stack Pointer

& 4

Figure 6: Registers in the Cortex-MO processor

RO0-R12: Registers RO to R12 are for general uses. The Thumb instructions can only access
low registers (RO to R7). Some instructions like MOV (move) can use all registers. The initial
values of RO to R12 at reset are undefined.

R13, Stack Pointer (SP): R13 is the stack pointer. It is used for accessing the stack memory
via PUSH and POP operations. There are physically two different stack pointers in Cortex-
MO. The main stack pointer (MSP) is used for running unusual handlers mode and process
stack pointer (PSP) is used for usual Thread mode.

R14, Link Register (LR): R14 is the Link Register. The Link Register is used for storing the

return address of a function call.
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R15, Program Counter (PC): R15 is the Program Counter. It is readable and writeable. Call
the Program Counter, using either “R15” or “PC,” in either upper or lower case (e.g., “r15” or

“pc”).

xPSR, combined Program Status Register

The combined Program Status Register provides information about program execution and
the ALU flags. It is consists of the following three Program Status Registers (PSRs) as in
Figure 7:

* Application PSR (APSR): Contains the ALU flags: N (negative flag), Z (zero flag), C (carry
or borrow flag), and V (overflow flag). These bits are at the top 4 bits of the APSR.
 Interrupt PSR (IPSR): Contains the current executing interrupt service routine (ISR)
number.

» Execution PSR (EPSR): Contains the T-bit, which indicates that the processor is in the
Thumb state.

bit bit

31 28 24] 16| 8| 0
APSR NIZ|C|V Reserved

31 24 16 8 5 0
IPSR Reserved ISR Number

31 24 16| 8‘ 0
EPSR Reserved T Reserved

Figure 7: APSR, IPSR, and EPSR.
These three registers can be accessed as one register called xPSR as given in Figure 8.

bit bit
31 28 24 16| 8| 5 0

xPSR N|Z|C|V|Reserved T Reserved ISR Number

Figure 8: xPSR

PRIMASK: Interrupt Mask Special Register
The PRIMASK register is a 1-bit-wide interrupt mask register as in Figure 9. When set, it

blocks all interrupts apart from the non-maskable interrupt (NMI) and the hard fault
exception. Effectively it raises the current interrupt priority level to 0, which is the highest
value for a programmable exception. The PRIMASK register can be accessed using special
register access instructions (MSR, MRS) as well as using an instruction called the Change
Processor State (CPS). This is commonly used for handling time-critical routines.
bit bit
31 10

PRIMASK Reserved

A

PRIMASK ——
Figure 9: PRIMASK
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CONTROL: Special Register

i. Physically there are two stack pointers in the Cortex-MO processor, but only one of them is
used at one time, depending on the current value of the CONTROL register as shown in the
Figure 10.

bit bit
31 10

CONTROL Reserved

A

Stack definition ——
Reserved

Figure 10: CONTROL

ii. After reset, the main stack pointer (MSP) is used, but can be switched to the process stack
pointer (PSP) in Thread mode by setting bit [1] in the CONTROL register as shown in the
Figure 11.

iii. During running of an exception handler (when the processor is in Handler mode), only the
MSP is used, and the CONTROL register reads as zero.

iv. Bit O of the CONTROL register is reserved to maintain compatibility with the Cortex-M3
processor.

.f/ Thumb State \I
Exception / Handler Mode \ Exception
request Executing exceplion handler return

f CONTROL[1] = 0
'\ MSP selected

Thread Mode
Executing normal code

St o] CONTROL1]=0 CONTROL1] = 1

MSP selected PSP selected

\_ J

Figure 11: Stack pointer selection

3. Memory System Overview

The Cortex-MO processor has 4 GB of memory address space. The memory space is
architecturally defined as a number of regions, with each region having a recommended
usage to help software porting between different devices as shown in the Figure 12.

10
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Private peripherals including
built-in interrupt controller
(NVIC) and debug
components

Mainly used for external
peripherals.

Mainly used for external
memory.

Mainly used for peripherals.

Mainly used for data memory
(e.g. static RAM.)

Mainly used for program
code. Also used for exception
vector table

OxFFFFFFFF

0xE0000000
OxDFFFFFFF

0xA0000000
0x9FFFFFFF

0x60000000
0x5FFFFFFF
0x40000000
0x3FFFFFFF
0x20000000
0x1FFFFFFF
0x00000000

Stack Memory Operations
Stack memory is a memory usage mechanism that allows the system memory to be used as

temporary data storage. The main element of stack memory operation is a register called the
stack pointer. The stack pointer is adjusted automatically each time a stack operation is
carried out. In common terms, storing data to the stack is called pushing (using the PUSH
instruction) and restoring data from the stack is called popping (using the POP instruction) as

0xEQOFFFFF

0xEQOOEFFF

Figure 12: Memory map

Privats System Control
System Peripheral Bus é ace (SCS)
(PPB) P
Private Peripheral Bus

0xE0000000 0xEOOOQEOOO0
External Device 1GB
External RAM 1GB
Peripherals  0.5GB
SRAM 0.5GB
CODE 0.5GB

shown in the Figure 13.

PUSH operation POP operation

Data Processing
(Original register
contents destroyed)

Stack PUSH operation to back up
register contents

Stack POP operation to restore
register contents

Stack pointer

Addrass Memary Mamory incremented
[ ] [ 1 [ 1] [ 1
o) ||y [ =
P[] [ 1] [ 1| sP= 1]
_j__‘__:______l SE‘—'* A—
- - Memary A T257 ]
Register Stack pointer ko 1255
contents decrementsd Register

contents restored

Figure 13: Stack PUSH and POP in the Cortex-M0 processor.

4. Exceptions and Interrupts
1. Exceptions are events that cause change to program control: instead of continuing program

execution, the processor suspends the current executing task and executes a part of the

11
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program code called the exception handler. After the exception handler is completed, it will
then resume the normal program execution.

ii. There are various types of exceptions. Interrupts are a subset of exceptions. They are 32
external interrupts (commonly referred as interrupt request, IRQs) and an additional special
interrupt called the nonmaskable interrupt (NMI).

iii. The exception handlers for interrupt events are commonly known as interrupt service
routines (ISRs).

Nested Vectored Interrupt Controller (NVIC)
To prioritize the interrupt requests and handle other exceptions, the Cortex-MO processor has

a built-in interrupt controller called the Nested Vectored Interrupt Controller (NVIC). The
interrupt management function is controlled by a number of programmable registers in the
NVIC. These registers are memory mapped, with the addresses located within the System
Control Space (SCS) as illustrated in Figure 12.

The NVIC supports a number of features:

* Flexible interrupt management: each external interrupt can be enabled or disabled. It can
also accept exception requests at external peripheral, at 1cycle.

* Nested interrupt support: each exception has a priority level. The priority level can be fixed
or programmable.

* Vectored exception entry: When an exception occurs, the processor will need to locate the
starting point of the corresponding exception handler.

* Interrupt masking

Interrupt Masking

The NVIC in the Cortex-MO processor provides an interrupt masking feature via the
PRIMASK special register. This can disable all exceptions except hard fault and NMI (non-
maskable interrupt, hardware—fatlure). This masking is useful for operations that should not
be interrupted such as time critical control tasks.

5. System Control Block (SCB)
Apart from the NVIC, the System Control Space (SCS) also contains a number of other

registers for system management. This is called the System Control Block (SCB). It contains
registers for sleep mode features and system exception configurations, as well as a register
containing the processor identification code.

Block Diagram

i. A simplified block diagram of the Cortex-MO is shown in Figure 14. The processor core
contains the register banks, ALU, data path, and control logic. It is a three stage pipeline
design with fetch stage, decode stage, and execution stage. The register bank has sixteen 32-
bit registers. A few registers have special usages.

ii. The Nested Vectored Interrupt Controller (NVIC) accepts up to 32 interrupt request signals
and a non-maskable interrupt (NMI) input.

iii. It contains the functionality required for comparing priority between interrupt requests
and the current priority level so that nested interrupts can be handled automatically.

12
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iv. If an interrupt is accepted, it communicates with the processor so that the processor can
execute the correct interrupt handler. The Wakeup Interrupt Controller (WIC) is an optional
unit.

iv. In low-power applications, the microcontroller can enter standby state with most of the
processor powered down. In this situation, the WIC can perform the function of interrupt
masking.

v. When an interrupt request is detected, the WIC informs the power management to power
up the system so that the NVIC and the processor core can then handle the rest of the
interrupt processing. The debug subsystem contains various functional blocks to handle
debug control, program breakpoints, and data watch points.

vi. The serial wire protocol is a newer communication protocol that only requires two wires,
but it can handle the same debug functionalities as JTAG (Joint Test Action Group). The
internal bus system, the data path in the processor core, and the AHB LITE bus interface are
all 32 bits wide.

vii. AHB-Lite is an on-chip bus protocol used in many ARM processors. This bus protocol is
part of the Advanced Microcontroller Bus Architecture (AMBA) specification, a bus
architecture developed by ARM that is widely used in the IC design industry.

Power management interface

=

=

> Wakeup | JTAG/
- Interrupt i Serial-Wire . Connection
» Controller | Debug " to debugger
o)) | Interface
= |

Interrupt - f\\l/ested

requests and > Intifrtl(jrt Processor Debug
NMI P core subsystem

P Controller
»  (NVIC)

Cortex-M0

Internal Bus System

AHB LITE
bus interface
unit

T

Bus Interface

-

Memory and
Peripherals

Figure 14: Simplified block diagram of the Cortex-MO processor
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Instruction Set

Background of ARM and Thumb Instruction Set

The early ARM processors use a 32-bit instruction set called the ARM instructions. The
32-bit ARM instruction set is powerful and provides good performance, but at the same time
it often requires larger program memory when compared to 8-bit and 16-bit processors. This
was and still is an issue, as memory is expensive and could consume a considerable amount
of power.

In 1995, ARM introduced the ARM7TDMI processor, adding a new 16-bit instruction set
called the Thumb instruction set. The ARM7TDMI supports both ARM instructions and
Thumb instructions, and a state-switching mechanism is used to allow the processor to decide
which instruction decode scheme should be used (Figure 5.1). The Thumb instruction set
provides a subset of the ARM instructions. By itself it can perform most of the normal
functions, but interrupt entry sequence and boot code must still be in ARM state. Nevertheless,
most processing can be carried out using Thumb instructions and interrupt handlers could
switch themselves to use the Thumb state, so the ARM7TDMI processor provides excellent
code density when compared to other 32-bit RISC architectures.

Instruction decode
format selection

>0
Incoming . ARM. Execution
. instruction >
Instructions decoder stage

_| Thumbremap | | 1
< to ARM o

T bit (0 = ARM,

1 =Thumb)
Figure 5.1:

ARM7TDMI design supports both ARM and the Thumb instruction set.

Thumb code provides a code size reduction of approximately 30% compared to the equivalent
ARM code. However, it has some impact on the performance and can reduce the performance
by 20%. On the other hand, in many applications, the reduction of program memory size and

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10005-9
Copyright © 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.
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the low-power nature of the ARM7TDMI processor made it extremely popular with portable
electronic devices like mobile phones and microcontrollers.

In 2003, ARM introduced Thumb-2 technology. This technology provides a number of
32-bit Thumb instructions as well as the original 16-bit Thumb instructions. The new
32-bit Thumb instructions can carry out most operations that previously could only be
done with the ARM instruction set. As a result, program code compiled for Thumb-2 is
typically 74% of the size of the same code compiled for ARM, but it maintains similar
performance.

The Cortex-M3 processor is the first ARM processor that supports only Thumb-2 instructions.
It can deliver up to 1.25 DMIPS per MHz (measured with Dhrystone 2.1), and various
microcontroller vendors are already shipping microcontroller products based on the Cortex-
M3 processor. By implementing only one instruction set, the software development is made
simpler and at the same time improves the energy efficiency because only one instruction
decoder is required (Figure 5.2).

. Thumb-2 .
Incoming . . _| Execution
. instruction >
Instructions stage
decoder
Figure 5.2:

Cortex-M processors do not have to remap instructions from Thumb to ARM.

In the ARMv6-M architecture used in the Cortex-MO processor, in order to reduce the circuit
size to a minimum, only the 16-bit Thumb instructions and a minimum subset of 32-bit Thumb
instructions are supported. These 32-bit Thumb instructions are essential because the
ARMv6-M architecture uses a number of features in the ARMv7-M architecture, which
requires these instructions. For example, the accesses to the special registers require the MSR
and MRS instructions. In addition, the Thumb-2 version of Branch and Link instruction (BL) is
also included to provide a larger branch range.

Although the Cortex-MO processor does not support many 32-bit Thumb instructions, the
Thumb instruction set used in the Cortex-MO processor is a superset of the original 16-bit
Thumb instructions supported on the ARM7TDMI, which is based on ARMv4T architecture.
Over the years, both ARM and Thumb instructions have gone through a number of
enhancements as the architecture has evolved. For example, a number of instructions for data
type conversions have been added to the Thumb instruction set for the ARMv6 and ARMv6-M
architectures. These instruction set enhancements, along with various implementation opti-
mizations, allow the Cortex-MO processor to deliver the same level of performance as an
ARM7TDMI running ARM instructions.
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Table 5.1 shows the base 16-bit Thumb instructions supported in the Cortex-MOQ.

Table 5.1: 16-Bit Thumb Instructions Supported on the Cortex-MO0 Processor

16-Bit Thumb Instructions Supported on Cortex-M0
ADC ADD ADR AND ASR B BIC BLX BKPT BX
CMN CMP CPS EOR LDM LDR LDRH LDRSH LDRB LDRSB
LSL LSR MOV MVN MUL NOP ORR POP PUSH REV
REV16 REVSH ROR RSB SBC SEV STM STR STRH STRB
SUB SvC SXTB SXTH TST UXTB UXTH WFE WFI YIELD

The Cortex-MO processor also supports a number of 32-bit Thumb instructions from Thumb-2
technology (Table 5.2):

* MRS and MSR special register access instructions

* ISB, DSB, and DMB memory synchronization instructions

* BL instruction (BL was supported in traditional Thumb instruction set, but the bit field
definition was extended in Thumb-2)

Table 5.2: 32-Bit Thumb Instructions Supported on the Cortex-MO0 Processor

32-Bit Thumb Instructions Supported on Cortex-M0

BL DSB DMB ISB MRS MSR

Assembly Basics

This chapter introduces the instruction set of the Cortex-MO0 processor. In most situations,
application code can be written entirely in C language and therefore it is not necessary to
know the details of the instruction set. However, it is still useful to know what instructions
are available and their usages; for example, this information might be needed during
debugging.

The complete details of each instruction are documented in the ARMv6-M Architecture
Reference Manual (reference 3). Here, the basic syntax and usage are introduced. First of all, to
help explain the assembly instructions covered in this chapter, some of the basic information
about assembly syntax is introduced here.

Quick Glance at Assembly Syntax

Most of the assembly examples in this book are written for the ARM assembler (armasm).
Assembly tools from different vendors (e.g., GNU tool chain) have different assembly syntax.
In most cases, the mnemonics of the assembly instructions are the same, but compile directives,
definitions, labeling, and comment syntax can be different.
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Most development tools still accept the pre-UAL syntax, including the ARM Real View
Development Suite (RVDS) and the Keil Microcontroller Development Kit for ARM (MDK).
However, the use of UAL is recommended for new projects. For assembly development with
RVDS or Keil MDK, you can specify using UAL syntax with “THUMB” directives and pre-
UAL syntax with “CODEI16” directives. The choice of assembler syntax depends on which
tool you use. Please refer to the documentation for your development suite to determine the
suitable syntax.

Instruction List

The instructions in the Cortex-MO processor can be divided into various groups based on
functionality:

e Moving data within the processor

¢ Memory accesses

* Stack memory accesses

e Arithmetic operations

* Logic operations

* Shift and rotate operations

* Extend and reverse ordering operations
e Program flow control (branch, conditional branch, and function calls)
e Memory barrier instructions

e Exception-related instructions

e Other functions

In this section, the instructions are discussed in more detail. The syntax illustrated here uses
symbols “Rd,” “Rm,” and the like. In real program code, these need to be substituted with
register names RO, R1, R2, and so on.

Moving Data within the Processor

Transferring data is one of the most common tasks in a processor. In Thumb code, the
instruction mnemonic for moving data is MOV. There are several types of MOV instructions,
based on the operand type and opcode suffix.

Instruction MoV

Function Move register into register

Syntax (UAL) MOV  <Rd>, <Rm>

Syntax (Thumb) MOV  <Rd>, <Rm>
CPY <Rd>, <Rm>

Note Rm and Rn can be high or low registers
CPYis a pre-UAL synonym for MOV (register)

This document is available free of charge on g stUdocu
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If we want to copy a register value to another and update the APSR at the same time, we could
use MOVS/ADDS.

Instruction MOVS/ADDS
Function Move register into register
Syntax (UAL) MOVS  <Rd>, <Rm>

ADDS <Rd>, <Rm>, #0
Syntax (Thumb) MOVS  <Rd>, <Rm>
Note Rm and Rn are both low registers
APSR.Z, APSR.N, and APSR.C (for ADDS) update

We can also load an immediate data element into a register using the MOV instruction.

Instruction MOV
Function Move immediate data (sign extended) into register
Syntax (UAL) MOVS  <Rd>, #immed8
Syntax (Thumb) MOV  <Rd>, #immed8
Note Immediate data range 0 to +255
APSR.Z and APSR.N update

If we want to load an immediate data element into a register that is out of the 8-bit value range,
we need to store the data into a program memory space and then use a memory access
instruction to read the data into the register. This can be written using a pseudo instruction
LDR, which the assembler converts into a real instruction. This process will be covered later in
this chapter.

The MOV instructions can cause a branch to happen if the destination register is R15 (PC).
However, generally the BX instruction is used for this purpose.

Another type of data transfer in the Cortex-MO processor is Special Registers accesses. To
access the Special Registers (CONTROL, PRIMASK, xPSR, etc.), the MRS and MSR
instructions are needed. These two instructions cannot be generated in C language. However,
they can be created using inline assembler or Embedded Assembler,” or another C compiler—
specific feature like the named register variables feature in ARM RVDS or Keil MDK.

Instruction MRS
Function Move Special Register into register
Syntax MRS  <Rd>, <SpecialReg>
Note Example:

MRS RO, CONTROL; Read CONTROL register into RO
MRS R9, PRIMASK; Read PRIMASK register into R9
MRS R3, xPSR; Read xPSR register into R3
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Table 5.5 shows the complete list of special register symbols that are available on the Cortex-
MO processor when MSR and MRS instructions are used.

Table 5.5: Special Register Symbols for MRS and MSR Instructions

Symbol Register Access Type
APSR Application Program Status Register (PSR) Read/Write
EPSR Execution PSR Read only
IPSR Interrupt PSR Read only
IAPSR Composition of IPSR and APSR Read only
EAPSR Composition of EPSR and APSR Read only
IEPSR Composition of IPSR and EPSR Read only
XPSR Composition of APSR, EPSR, and IPSR Read only
MSP Main stack pointer Read/Write
PSP Process stack pointer Read/Write
PRIMASK Primary exception mask register Read/Write
CONTROL CONTROL register Read/Write in Thread mode
Read only in Handler mode
Instruction MSR
Function Move register into Special Register
Syntax MSR <SpecialReg>, <Rd>
Note Example:
MSR CONTROL, RO; Write RO into CONTROL register
MSR PRIMASK, R9; Write R9 into PRIMASK register

Memory Accesses

The Cortex-MO processor supports a number of memory access instructions, which support
various data transfer sizes and addressing modes. The supported data transfer sizes are Word,
Half Word and Byte. In addition, there are separate instructions to support signed and unsigned
data. Table 5.6 summarizes the memory address instruction mnemonics.

Most of these instructions also support multiple addressing modes. When the instruction
is used with different operands, the assembler will generate different instruction encoding.

Table 5.6: Memory Access Instructions for Various Transfer Sizes

Transfer Size Unsigned Load Signed Load Signed/Unsigned Store
Word LDR LDR STR

Half word LDRH LDRSH STRH

Byte LDRB LDRSB STRB
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Important

It is important to make sure the memory address accessed is aligned. For example, a word size
access can only be carried out on address locations when address bits[1:0] are set to zero, and
a half word size access can only be carried out on address locations when an address bit[0] is
set to zero. The Cortex-MO processor does not support unaligned transfers. Any attempt at
unaligned memory access results in a hard fault exception. Byte-size transfers are always aligned
on the Cortex-MO processor.

For memory read operations, the instruction to carry out single accesses is LDR (load):

Instruction LDR/LDRH/LDRB

Function Read single memory data into register

Syntax LDR  <Rt>, [<Rn>, <Rm>] ; Word read
LDRH <Rt>, [<Rn>, <Rm>] ; Half Word read
LDRB  <Rt>, [<Rn>, <Rm>] ; Byte read

Note Rt = memory[Rn + Rm]
Rt, Rn and Rm are low registers

The Cortex-MO processor also supports immediate offset addressing modes:

Instruction LDR/LDRH/LDRB

Function Read single memory data into register

Syntax LDR  <Rt>, [<Rn>, #immedS5] ; Word read
LDRH <Rt>, [<Rn>, #immedS5] ; Half Word read
LDRB <Rt>, [<Rn>, #immed5] ; Byte read

Note Rt = memory[Rn 4 ZeroExtend (#immed5 << 2)] ; Word

Rt = memory[Rn + ZeroExtend(#immed5 << 1)] ; Half word
Rt = memory[Rn + ZeroExtend(#immed5)] ; Byte
Rt and Rn are low registers

The Cortex-MO processor supports a useful PC relative load instruction for allowing efficient
literal data accesses. This instruction can be generated when we use the LDR pseudo
instruction for putting an immediate data value into a register. These data are stored alongside
the instructions, called literal pools.

Instruction LDR

Function Read single memory data word into register

Syntax LDR  <Rt>, [PC, #immed8] ; Word read

Note Rt = memory[WordAligned(PC+4) + ZeroExtend(#immed8 << 2)]

Rt is a low register, and targeted address must be a word-aligned address,
the reason for adding 4.

(Continued)
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Instruction LDR

Example:
LDR RO0,=0x12345678 ; A pseudo instruction that uses literal load
; to put an immediate data into a register
LDR RO, [PC, #0x40] ; Load a data in current program address
; with offset of 0x40 into RO
LDR RO, label ; Load a data in current program
; referenced by label into RO

There is also an SP-related load instruction, which supports a wider offset range. This
instruction is useful for accessing local variables in C functions because often the local
variables are stored on the stack.

Instruction LDR

Function Read single memory data word into register

Syntax LDR <Rt>, [SP, #immed8] ; Word read

Note Rt = memory[SP + ZeroExtend(#immed8 << 2)]
Rt is a low register

The Cortex-MO processor can also sign extends the read data automatically using the
LDRSB and LDRSH instructions. This is useful when a signed 8-bit/16-bit data type is used,
which is common in C programs.

Instruction LDRSH/LDRSB
Function Read single signed memory data into register
Syntax LDRSH <Rt>, [<Rn>, <Rm>] ; Half word read
LDRSB <Rt>, [<Rn>, <Rm>] ; Byte read
Note Rt = SignExtend(memory[Rn 4+ Rm])
Rt, Rn and Rm are low registers

For single data memory writes, the instruction is STR (store):

Instruction STR/STRH/STRB
Function Write single register data into memory
Syntax STR <Rt>, [<Rn>, <Rm>] ; Word write

STRH <Rt>, [<Rn>, <Rm>] ; Half Word write
STRB  <Rt>, [<Rn>, <Rm>] ; Byte write

Note memory[Rn + Rm] = Rt
Rt, Rn and Rm are low registers
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Like the load operation, the store operation supports an immediate offset addressing mode:

Instruction STR/STRH/STRB
Function Write single memory data into memory
Syntax STR <Rt>, [<Rn>, #immedS5] ; Word write

STRH <Rt>, [<Rn>, #immedS5] ; Half Word write
STRB  <Rt>, [<Rn>, #immedS5] ; Byte write

Note memory[Rn + ZeroExtend(#immed5 << 2)] = Rt ; Word
memory[Rn + ZeroExtend(#immed5 << 1)] = Rt ; Half word
memory[Rn + ZeroExtend(#immedS5)] = Rt ; Byte

Rt and Rn are low registers

An SP-relative store instruction, which supports a wider offset range, is also available. This
instruction is useful for accessing local variables in C functions because often the local vari-
ables are stored on the stack.

Instruction STR

Function Write single memory data word into memory

Syntax STR  <Rt>, [SP, #immed8] ; Word write

Note memory[SP + ZeroExtend(#immed8 << 2)] = Rt
Rt is a low register

One of the important features in ARM processors is the ability to load or store multiple
registers with one instruction. There is also an option to update the base address register to the
next location. For load/store multiple instructions, the transfer size is always in word size.

Instruction LDM (Load Multiple)

Function Read multiple memory data word into registers, base address register update by memory read
Syntax LDM  <Rn>, {<Ra>, <Rb> ,....} ; Load multiple registers from memory

Note Ra = memory[Rn],

Rb = memory[Rn+4],

Rn, Ra, Rb .... are low registers. Rn is on the list of registers to be updated by memory read.
For example,

LDM  R2, {R1, R2, R5 — R7}; Read R1,R2,R5,R6 and R7 from memory.

Instruction LDMIA (Load Multiple Increment After)/LDMFD — Base Address Register Update
to Subsequence Address

Function Read multiple memory data word into registers and update base register

Syntax LDMIA <Rn>!, {<Ra>, <Rb> ,....} ; Load multiple registers from memory

; and increment base register after completion

Note Ra = memory[Rn],

(Continued)

Downloaded by gopal krishna (gopal.ngk@gmail.com)



86 Chapter 5

Instruction LDMIA (Load Muiltiple Increment After)/LDMFD — Base Address Register Update
to Subsequence Address

Rb = memory[Rn+4],

and then update Rn to last read address plus 4

Rn, Ra, Rb .... are low registers. For example,

LDMIA RO!, {R1, R2, R5 — R7} ; Read multiple registers, RO update to address after last
read operation.

LDMFD is another name for the same instruction, which was used for restoring data from
a Full Descending stack, in traditional ARM systems that use software managed stacks.

Instruction STMIA (Store Multiple Increment After)/STMEA
Function Write multiple register data into memory and update base register
Syntax STMIA <Rn>!, {<Ra>, <Rb> ,....} ; Store multiple registers to memory

; and increment base register after completion
Note memory[Rn] = Ra,
memory[Rn+4] = Rb,

and then update Rn to last store address plus 4

Rn, Ra, Rb .... are low registers. For example,

STMIA RO!, {R1, R2, R5 — R7}; Store R1, R2, R5, R6, and R7 to memory
; and update RO to address after where R7 stored

STMEA is another name for the same instruction, which was used for

storing data to an Empty Ascending stack, in traditional ARM systems that

use software managed stack.

If <Rn> is in the register list, it must be the first register in the register list.

Stack Memory Accesses

Two memory access instructions are dedicated to stack memory accesses. The PUSH
instruction is used to decrement the current stack pointer and store data to the stack. The POP
instruction is used to read the data from the stack and increment the current stack pointer. Both
PUSH and POP instructions allow multiple registers to be stored or restored. However, only
low registers, LR (for PUSH operation) and PC (for POP operation), are supported.

Instruction PUSH
Function Write single or multiple registers (low register and LR) into memory and
update base register (stack pointer)
Syntax PUSH {<Ra>, <Rb> ,....} ; Store multiple registers to memory and
; decrement SP to the lowest pushed data address
PUSH {<Ra>, <Rb>, ...., LR} ; Store multiple registers and LR to
; memory and decrement SP to the lowest pushed data address

(Continued)
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Instruction PUSH

Note memory[SP-4] = Ra,
memory[SP-8] = Rb,

and then update SP to last store address. For example,
PUSH {R1, R2, R5 — R7, LR} ; Store R1, R2, R5, R6, R7, and LR to stack

Instruction POP
Function Read single or multiple registers (low register and PC) from memory and
update base register (stack pointer)
Syntax POP {<Ra>, <Rb> ,....} ; Load multiple registers from memory
; and increment SP to the last emptied stack address plus 4
POP {<Ra>, <Rb>, ...., PC}; Load multiple registers and PC from

; memory and increment SP to the last emptied stack
; address plus 4
Note Ra = memory[SP],
Rb = memory[SP+4],

and then update SP to last restored address plus 4. For example,
POP {R1, R2, R5 — R7} ; Restore R1, R2, R5, R6, R7 from stack

By allowing the Link Register (LR) and Program Counter (PC) to be used with the PUSH and
the POP instructions, a function call can combine the register restore and function return
operations into a single instruction. For example,

my_function
PUSH { R4, R5, R7, LR} ; Save R4, R5, R7 and LR (return address)
.. ; function body
POP { R4, R5, R7, PC} ; Restore R4, R5, R7 and return

Arithmetic Operations

The Cortex-MO processor supports a number of arithmetic operations. The most basic are add,
subtract, twos complement, and multiply. For most of these instructions, the operation can be
carried out between two registers, or between one register and an immediate constant.

Instruction ADD
Function Add two registers
Syntax (UAL) ADDS <Rd>, <Rn>, <Rm>
Syntax (Thumb) ADD  <Rd>, <Rn>, <Rm>
Note Rd = Rn 4+ Rm, APSR update.
Rd, Rn, Rm are low registers.
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Instruction

ADD

Function
Syntax (UAL)

Syntax (Thumb)

Add an immediate constant into a register
ADDS <Rd>, <Rn>, #immed3

ADDS <Rd>, #immed8

ADD  <Rd>, <Rn>, #immed3

ADD  <Rd>, #immed8

Note Rd = Rn + ZeroExtend(#immed3), APSR update, or
Rd = Rd + ZeroExtend(#immed8), APSR update.
Rd, Rn, Rm are low registers.

Instruction ADD

Function Add two registers without updating APSR

Syntax (UAL) ADD <Rd>, <Rm>

Syntax (Thumb) ADD <Rd>, <Rm>

Note Rd = Rd + Rm.
Rd, Rm can be high or low registers.

Instruction ADD

Function Add stack pointer to a register without updating APSR

Syntax (UAL)
Syntax (Thumb)
Note

ADD <Rd>, SP, <Rd>
ADD <Rd>, SP

Rd = Rd + SP.

Rd can be high or low register.

Instruction

ADD

Function

Syntax (UAL)
Syntax (Thumb)
Note

Add stack pointer to a register without updating APSR
ADD SP, <Rm>

ADD SP, <Rm>

SP = SP + Rm.

Rm can be high or low register.

Instruction

ADD

Function

Syntax (UAL)
Syntax (Thumb)
Note

Add stack pointer to a register without updating APSR
ADD <Rd>, SP, #immed8

ADD <Rd>, SP, #immed8

Rd = SP + ZeroExtend(#immed8 <<2).

Rd is a low register.
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Instruction

ADD

Function

Syntax (UAL)
Syntax (Thumb)
Note

Add an immediate constant to stack pointer

ADD  SP, SP, #immed7

ADD SP, #immed7

SP = SP + ZeroExtend(#immed7 <<2).

This instruction is useful for C functions to adjust the SP for local variables.

Instruction

ADR (ADD)

Function
Syntax (UAL)

Syntax (Thumb)

Note

Add an immediate constant with PC to a register without updating APSR
ADR <Rd>, <label> (normal syntax)

ADD <Rd>, PC, #immed8 (alternate syntax)

ADR <Rd>, (normal syntax)

ADD <Rd>, PC, #immed8 (alternate syntax)

Rd = (PC[31:2]<<2) + ZeroExtend(#immed8 <<2).

This instruction is useful for locating a data address within the program memory

near to the current instruction. The result address must be word aligned.
Rd is a low register.

Instruction

ADC

Function
Syntax (UAL)
Syntax (Thumb)

Add with carry and update APSR
ADCS <Rd>, <Rm>
ADC  <Rd>, <Rm>

Note Rd = Rd + Rm + Carry

Rd and Rm are low registers.
Instruction SuB
Function Subtract two registers

Syntax (UAL)
Syntax (Thumb) SUB

SUBS <Rd>, <Rn>, <Rm>
<Rd>, <Rn>, <Rm>

Note Rd = Rn — Rm, APSR update.
Rd, Rn, Rm are low registers.
Instruction SuB
Function Subtract a register with an immediate constant

Syntax (UAL)
Syntax (Thumb)

Note

SUBS <Rd>, <Rn>, #immed3

SUBS <Rd>, #immed8

SUB  <Rd>, <Rn>, #immed3

SUB  <Rd>, #immed8

Rd = Rn — ZeroExtend(#immed3), APSR update, or
Rd = Rd — ZeroExtend(#immed8), APSR update.
Rd, Rn are low registers.
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There are also a few compare instructions that compare (using subtract) values and update flags

Instruction

SUB

Function

Syntax (UAL)
Syntax (Thumb)
Note

Subtract SP by an immediate constant
SUB SP, SP, #immed7

SUB  SP, #immed7

SP = SP - ZeroExtend(#immed7 <<2).
This instruction is useful for C functions to
adjust the SP for local variables.

Instruction

SBC

Function

Syntax (UAL)
Syntax (Thumb)
Note

Subtract with carry (borrow)

SBCS <Rd>, <Rd>, <Rm>

SBC  <Rd>, <Rm>

Rd = Rd — Rm — Borrow, APSR update.
Rd and Rm are low registers.

Instruction

RSB

Function

Syntax (UAL)
Syntax (Thumb)
Note

Reverse Subtract (negative)
RSBS <Rd>, <Rn>, #0
NEG <Rd>, <Rn>

Rd = 0 — Rm, APSR update.
Rd and Rm are low registers.

Instruction

MUL

Function

Syntax (UAL)
Syntax (Thumb)
Note

Multiply

MULS <Rd>, <Rm>, <Rd>

MUL  <Rd>, <Rm>

Rd = Rd * Rm, APSR.N, and APSR.Z update.
Rd and Rm are low registers.

(APSR), but the result of the comparison is not stored.

Instruction

CMP

Function

Syntax (UAL)
Syntax (Thumb)
Note

Compare

CMP <Rn>, <Rm>

CMP <Rn>, <Rm>

Calculate Rn — Rm, APSR update but
subtract result is not stored.
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Instruction CMP

Function Compare

Syntax (UAL) CMP  <Rn>, #immed8

Syntax (Thumb) CMP  <Rn>, #immed8

Note Calculate Rd — ZeroExtended(#immed8), APSR update but

subtract result is not stored. Rn is a low register.

Instruction CMN

Function Compare negative

Syntax (UAL) CMN  <Rn>, <Rm>

Syntax (Thumb) CMN  <Rn>, <Rm>

Note Calculate Rn — NEG(Rm), APSR update but subtract result is not

stored. Effectively the operation is an ADD.

Logic Operations

Another set of essential operations in most processors is made up of logic operations. For
logical operations, the Cortex-MO processor has a number of instructions available, including
basic features like AND, OR, and the like. In addition, it has a number of instructions for

compare and testing.

Instruction

AND

Function
Syntax (UAL)
Syntax (Thumb)

Logical AND
ANDS <Rd>, <Rd>, <Rm>
AND  <Rd>, <Rm>

Syntax (UAL)
Syntax (Thumb)

Note Rd = AND(Rd, Rm), APSR.N, and APSR.Z update.
Rd and Rm are low registers.

Instruction ORR

Function Logical OR

ORRS <Rd>, <Rd>, <Rm>
ORR  <Rd>, <Rm>

Syntax (UAL)
Syntax (Thumb)
Note

Note Rd = OR(Rd, Rm), APSR.N, and APSR.Z update.
Rd and Rm are low registers.

Instruction EOR

Function Logical Exclusive OR

EORS <Rd>, <Rd>, <Rm>

EOR  <Rd>, <Rm>

Rd = XOR(Rd, Rm), APSR.N, and APSR.Z update.
Rd and Rm are low registers.
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Instruction BIC

Function Logical Bitwise Clear

Syntax (UAL) BICS <Rd>, <Rd>, <Rm>

Syntax (Thumb) BIC <Rd>, <Rm>

Note Rd = AND(Rd, NOT(Rm)), APSR.N, and APSR.Z update.

Rd and Rm are low registers.

Instruction MVN

Function Logical Bitwise NOT

Syntax (UAL) MVNS  <Rd>, <Rm>

Syntax (Thumb) MVN  <Rd>, <Rm>

Note Rd = NOT(Rm), APSR.N, and APSR.Z update.

Rd and Rm are low registers.

Instruction TST

Function Test (bitwise AND)

Syntax (UAL) TST  <Rn>, <Rm>

Syntax (Thumb) TST  <Rn>, <Rm>

Note Calculate AND(Rn, Rm), APSR.N, and APSR.Z update, but

the AND result is not stored.
Rd and Rm are low registers.

Shift and Rotate Operations

The Cortex-MO also supports shift and rotate instructions. It supports both arithmetic shift
operations (the datum is a signed integer value where MSB needs to be reserved) as well as
logical shift.

Instruction ASR

Function Arithmetic Shift Right

Syntax (UAL) ASRS <Rd>, <Rd>, <Rm>

Syntax (Thumb) ASR  <Rd>, <Rm>

Note Rd = Rd >> Rm, last bit shift out is copy to APSR.C,
APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Instruction ASR
Function Arithmetic Shift Right
Syntax (UAL) ASRS  <Rd>, <Rm>, #immed5

(Continued)
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Instruction ASR
Syntax (Thumb) ASR  <Rd>, <Rm>, #immedS5
Note Rd = Rm >> immed5, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

When ASR is used, the MSB of the result is unchanged, and the Carry flag is updated using the

last bit shifted out (Figure 5.3).

Arithmetic Shift Right (ASR)

»
P

Register

Y
@]

Figure 5.3:

Arithmetic Shift Right.

For logical shift operations, the instructions are LSL (Figure 5.4) and LSR (Figure 5.5).

Instruction LSL

Function Logical Shift Left

Syntax (UAL) LSLS <Rd>, <Rd>, <Rm>

Syntax (Thumb) LSL  <Rd>, <Rm>

Note Rd = Rd << Rm, last bit shifted out is copied to APSR.C,
APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Logical Shift Left (LSL)

Cc

A

Register

l«— 0

Figure 5.4:

Logical Shift Left.

Logical Shift Right (LSR)

00—

Register

A4
(@)

Figure 5.5:

Logical Shift Right.
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Instruction

LSL

Function

Syntax (UAL)
Syntax (Thumb)
Note

Logical Shift Left

LSLS <Rd>, <Rm>, #immed5

LSL  <Rd>, <Rm>, #immed5

Rd = Rm << #immed5, last bit shifted out is copied to
APSR.C, APSR.N and APSR.Z are also updated.

Rd and Rm are low registers.

Instruction

LSR

Function

Syntax (UAL)
Syntax (Thumb)
Note

Logical Shift Right

LSRS <Rd>, <Rd>, <Rm>

LSR  <Rd>, <Rm>

Rd = Rd >> Rm, last bit shifted out is copied to APSR.C,
APSR.N and APSR.Z are also updated.

Rd and Rm are low registers.

Instruction

LSR

Function

Syntax (UAL)
Syntax (Thumb)
Note

Logical Shift Right

LSRS <Rd>, <Rm>, #immedS5

LSR  <Rd>, <Rm>, #immed5

Rd = Rm >> #immed$5, last bit shifted out is copied to
APSR.C, APSR.N and APSR.Z are also updated.

Rd and Rm are low registers.

Rotate Right (ROR)

There is only one rotate instruction, ROR (Figure 5.6).

Y
(@)

> Register

Figure 5.6:
Rotate Right.

Instruction

ROR

Function

Syntax (UAL)
Syntax (Thumb)
Note

Rotate Right

RORS <Rd>, <Rd>, <Rm>

ROR  <Rd>, <Rm>

Rd = Rd rotate right by Rm bits, last bit shifted out is copied
to APSR.C, APSR.N and APSR.Z are also updated.

Rd and Rm are low registers.
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If a rotate left operation is needed, this can be done using a ROR with a different offset:

Rotate_Left(Data, offset) = = Rotate_Right(Data, (32 — offset))

Extend and Reverse Ordering Operations

The Cortex-MO processor supports a number of instructions that can perform data reordering or
extraction (Figures 5.7, 5.8, and 5.9).

Instruction REV (Byte-Reverse Word)

Function Byte Order Reverse

Syntax REV ~ <Rd>, <Rm>

Note Rd = {Rm[7:0] , Rm[15:8], Rm[23:16], Rm[31:24]}
Rd and Rm are low registers.

Bit Bit Bit Bit

[31:24]  [23:16]  [158] [7:0]

I e e
Figure 5.7:

REV operation.

Instruction REV16 (Byte-Reverse Packed Half Word)

Function Byte Order Reverse within half word

Syntax REV16 <Rd>, <Rm>

Note Rd = {Rm[23:16], Rm[31:24], Rm[7:0] , Rm[15:8]}
Rd and Rm are low registers.

Bit Bit Bit Bit
[31:24]  [23:16]  [15:8] [7:0]
| >||< : >||< |
I e e

Figure 5.8:

REV16 operation.
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Instruction REVSH (Byte-Reverse Signed Half Word)
Function Byte order reverse within lower half word, then sign extend result
Syntax REVSH <Rd>, <Rm>
Note Rd = SignExtend({Rm[7:0] , Rm[15:8]})
Rd and Rm are low registers.

Bit Bit Bit Bit
[31:24]  [23:16]  [15:8] [7:0]
L] >||< |

[ signextend | | | |
-t

Figure 5.9:
REVSH operation.

These reverse instructions are usually used for converting data between little endian and big
endian systems.

The SXTB, SXTH, UXT, and UXTH instructions are used for extending a byte or half word
data into a word. They are usually used for data type conversions.

Instruction SXTB (Signed Extended Byte)
Function SignExtend lowest byte in a word of data
Syntax SXTB <Rd>, <Rm>

Note Rd = SignExtend(Rm[7:0])

Rd and Rm are low registers.

Instruction SXTH (Signed Extended Half Word)
Function SignExtend lower half word in a word of data
Syntax SXTH <Rd>, <Rm>

Note Rd = SignExtend(Rm[15:0])

Rd and Rm are low registers.

Instruction UXTB (Unsigned Extended Byte)
Function Extend lowest byte in a word of data
Syntax UXTB <Rd>, <Rm>

Note Rd = ZeroExtend(Rm[7:0])

Rd and Rm are low registers.
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Instruction UXTH (Unsign Extended Half Word)
Function Extend lower half word in a word of data
Syntax UXTH <Rd>, <Rm>
Note Rd = ZeroExtend(Rm[15:0])
Rd and Rm are low registers.

With SXTB or SXTH, the data are extended using bit[7] or bit[15] of the input data, whereas
for UXTB and UXTH, the data are extended using zeros. For example, if RO is 0Ox55AA8765,

the result of these extended instructions is

SXTB R1, RO ; R1 =0x00000065
SXTH R1, RO ; R1 = OxFFFFE8765
UXTB R1, RO ; R1 =0x00000065
UXTH R1, RO ; R1 =0x00008765

Program Flow Control

There are five branch instructions in the Cortex-MO processor. They are essential for program
flow control like looping and conditional execution, and they allow program code to be

partitioned into functions and subroutines.

Instruction B (Branch)
Function Branch to an address (unconditional)
Syntax B <label>
Note Branch range is +/— 2046 bytes of current program counter
Instruction B<cond> (Conditional Branch)
Function Depending of APSR, branch to an address
Syntax B<cond> <label>
Note Branch range is +/— 254 bytes of current program counter.
For example,
CMP RO, #0x1 ; Compare RO with Ox1
BEQ process1 ; Branch to process1 if RO equal 1

The <cond> is one of the 14 possible condition suffixes (Table 5.7).

For example, a simple loop that runs three times could be

MOVS RO, #3 ; Loop counter starting value is 3
loop ; “loop” is an address label
SUBS RO, #1 ; Decrement by 1 and update flag
BGT loop ; branch to loop if RO is Greater Than (GT) 1
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Table 5.7: Condition Suffixes for Conditional Branch

Suffix Branch Condition Flags (APSR)

EQ Equal Z flag is set

NE Not equal Z flag is cleared

CS/HS Carry set / unsigned higher  C flag is set

or same

CC/LO Carry clear / unsigned lower C flag is cleared

Ml Minus / negative N flag is set (minus)

PL Plus / positive or zero N flag is cleared

VS Overflow V flag is set

\e No overflow V flag is cleared

HI Unsigned higher C flag is set and Z is cleared

LS Unsigned lower or same C flag is cleared or Z is set

GE Signed greater than or equal N flag is set and V flag is set, or
N flag is cleared and V flag is cleared (N == V)

LT Signed less than N flag is set and V flag is cleared, or
N flag is cleared and V flag is set (N !1=V)

GT Signed greater then Z flag is cleared, and either both N flag and V flag are set, or
both N flag and V flag are cleared (Z == 0 and N == V)

LE Signed less than or equal Z flag is set, or either N flag set with V flag cleared, or N flag
cleared and V flag set (Z == 1 or N |=V)

The loop will execute three times. The third time, RO is 1 before the SUBS instruction. After
the SUBS instruction, the zero flag is set, so the condition for the branch failed and the program
continues execution after the BGT instruction.

Instruction BL (Branch and Link)

Function Branch to an address and store return address to LR. Usually use
for function calls, and can be used for long-range branch that is
beyond the branch range of branch instruction (B <label>).

Syntax BL <label>

Note Branch range is +/— 16MB of current program counter.

For example,
BL functionA ; call a function called functionA

Instruction BX (Branch and Exchange)

Function Branch to an address specified by a register, and change
processor state depending on bit[0] of the register.

Syntax BX <Rm>

Note Because the Cortex-MO processor only supports Thumb code,

bit[0] of the register content (Rm) must be set to 1, otherwise it
means it is trying to switch to the ARM state and this will
generate a fault exception.
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BL is commonly used for calling a subroutine or function. When it is executed, the address of
the next instruction will be stored to the Link Register (LR), with the LSB set to 1. When the
subroutine or function completes the required task, it can then return to the calling program by
executing a “BX LR” instruction (Figure 5.10).

LR set to address of next
instruction, and LSB set to

BL func1 ; call Function1 1

¥> func1 ; Function 1

/\/BX LR ; Return

MOV R4, RO ; next instruction

main

Load return
address in LR into
PC

Figure 5.10:
Function call and return using BL and BX instructions.

BX can also be used to branch to an address that has an offset that is more than the normal
branch instruction. Because the target is specified by a 32-bit register, it can branch to any
address in the memory map.

Instruction BLX (Branch and Link with Exchange)

Function Branch to an address specified by a register, save return address to LR,
and change processor state depending on bit[0] of the register.

Syntax BLX <Rm>

Note Because the Cortex-MO processor only supports Thumb code, the bit

[0] of the register content (Rm) must be set to 1, otherwise it means it
is trying to switch to the ARM state and this will create a fault
exception.

BLX is used when a function call is required but the address of the function is held inside
a register (e.g., when working with function pointers).

Memory Barrier Instructions

Memory barrier instructions are often needed when the memory system is complex. In some
cases, if the memory barrier instruction is not used, race conditions could occur and cause
system failures. For example, in some ARM processors that support simultaneous bus transfers
(as a processor can have multiple memory interfaces), the transfer sequence of these transfers
might overlap. If the software code relies on strict ordering of memory access sequences, it
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could result in software errors in corner cases. The memory barrier instructions allow the
processor to stop executing the next instruction, or stop starting a new transfer, until the current
memory access has completed.

Because the Cortex-MO processor only has a single memory interface to the memory system
and does not have a write buffer in the system bus interface, the memory barrier instruction is
rarely needed. However, memory barriers may be necessary on other ARM processors that
have more complex memory systems. If the software needs to be portable to other ARM
processors, then the uses of memory barrier instructions could be essential. Therefore, the
memory barrier instructions are supported on the Cortex-MO to provide better compatibility
between the Cortex-MO processor and other ARM processors.

There are three memory barrier instructions that support on the Cortex-MO0 processor:

 DMB
e DSB
e ISB
Instruction DMB
Function Data Memory Barrier
Syntax DMB
Note Ensures that all memory accesses are completed before new

memory access is committed

Instruction DSB

Function Data Synchronization Barrier

Syntax DsSB

Note Ensures that all memory accesses are completed before the next

instruction is executed

Instruction ISB

Function Instruction Synchronization Barrier

Syntax ISB

Note Flushes the pipeline and ensures that all previous instructions are

completed before executing new instructions

Architecturally, there are various cases where these instructions are needed. Although in

practice omitting the memory barrier instruction might not cause any issue on the Cortex-MO,
it could be an issue when the same software is used on another ARM processor. For example,
after changing the CONTROL register with MSR instruction, architecturally an ISB should be
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used after writing to the CONTROL register to ensure subsequent instructions use the updated
settings. Although the Cortex-MO omits the ISB instruction in this case, the omission does not
cause an issue.

Another example is memory remap control. In some microcontrollers, a hardware register can
change the memory map. After writing to the memory map switching register, you need to use
the DSB instruction to ensure the write has been completed and memory configuration has
been updated before carrying out the next step. Otherwise, if the memory switching is delayed,
possibly because of a write buffer in the system bus interface (e.g., the Cortex-M3 has a write
buffer in the system bus interface to allow higher performance), and the processor starts to
access the switched memory region immediately, the access could be using the old memory
mapping, or the transfer could become corrupted by the memory map switching.

Memory barrier instruction is also needed when the program contains self-modifying code. For
example, if an application changes its own program code, the instruction execution that follows
should use the updated program code. However, if the processor is pipelined or has a fetch
buffer, the processor may have already fetched an old copy of the modified instruction. In this
case, the program should use a DSB operation to ensure the write to the memory is completed;
then it should use an ISB instruction to ensure the instruction fetch buffer is updated with the
new instructions.

More details about memory barriers can be found in the ARMv6-M Architecture Reference

manual (reference 3).

Exception-Related Instructions

The Cortex-MO processor provides an instruction called supervisor call (SVC). This instruction
causes the SVC exception to take place immediately if the exception priority level of SVC is
higher than current level.

Instruction SvC
Function Supervisor call
Syntax SVC #<immed8>
SVC <immed8>
Note Trigger the SVC exception. For example,

SVC #3 ; SVC instruction, with parameter, equals 3.
Alternative syntax without the “#” is also allowed. For example,
SVC 3 ; this is the same as SVC #3.

An 8-bit immediate data element is used with SVC instruction. This parameter does not affect
the SVC exception directly, but it can be extracted by the SVC handler and be used as an input
to the SVC function. Typically the SVC can be used to provide access to system service or the
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application programming interface (API), and this parameter can be used to indicate which
system service is required.

If the SVC instruction is used in an exception handler that has the same or a higher priority than
the SVC, this will cause a fault exception. As a result, the SVC cannot be used in the hard fault
handler, the NMI handler, or the SVC handler itself.

Besides using MSR instruction, the PRIMASK special register can also be changed using an
instruction called CPS:

Instruction CPS

Function Change processor state: enable or disable interrupt

Syntax CPSIE | ; Enable Interrupt (Clearing PRIMASK)
CPSID | ; Disable Interrupt (Setting PRIMASK)

Note PRIMASK only block external interrupts, SVC, PendSV, SysTick. But
it does not block NMI and the hard fault handler.

The switching of PRIMASK to disable and enable the interrupt is commonly used for timing
critical code.

Sleep Mode Feature—Related Instructions

The Cortex-MO processor can enter sleep mode by executing the Wait-for-Interrupt (WFI) and
Wait-for-Event (WFE) instructions. Note that for the Cortex-M1 processor, as the design is
implemented in a FPGA design, which does not have sleep mode, these two instructions
execute as NOP and will not cause the processor to stop.

Instruction WEFI

Function Wait for Interrupt

Syntax WFI

Note Stops program execution until an interrupt arrives or until the
processor enters a debug state.

WEE is just like WFI, except that it can also be awakened by events. An event can be an
interrupt, the execution of an SEV instruction (see next page), or the entering of a debug state.
A previous event also affects a WFE instruction: Inside the Cortex-MO processor, there is an
event register that records whether an event has occurred (exceptions, external events, or the
execution of an SEV instruction). If the event register is not set when the WFE is executed, the
WEE instruction execution will cause the processor to enter sleep mode. If the event register is
set when WEFE is executed, it will cause the event register to be cleared and the processor
proceeds to the next instruction.
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Instruction WFE

Function Wait for Event

Syntax WFE

Note If the internal event register is set, it clears the internal event register and
continues execution. Otherwise, stop program execution until an event (e.g.,
an interrupt) arrives or until the processor enters a debug state.

WEE can also be awakened by an external event input signal, which is normally used in
a multiprocessing environment.

The Send Event (SEV) instruction is normally used in multiprocessor systems to wake up other
processors that are in sleep mode by means of the WFE instruction. For single-processor
systems, where the processor does not have a multiprocessor communication interface or the
multiprocessor communication interface is not used, the SEV can only affect the local event
register inside the processor itself.

Instruction SEV

Function Send event to all processors in multiprocessing environment (including itself)

Syntax SEV

Note Set local event register and send out an event pulse to other microprocessor in
a multiple processor system

Other Instructions

The Cortex-MO processor supports an NOP instruction. This instruction can be used to produce
instruction alignment or to introduce delay.

Instruction NOP

Function No operation

Syntax NOP

Note The NOP instruction takes one cycle minimum on Cortex-MO. In general, delay

timing produced by NOP instruction is not guaranteed and can vary among
different systems (e.g., memory wait states, processor type). If the timing delay
needs to be accurate, a hardware timer should be used.

The breakpoint instruction is used to provide a breakpoint function during debug. Usually

a debugger, replacing the original instruction, inserts this instruction. When the breakpoint is
hit, the processor would be halted, and the user can then carry out the debug tasks through the
debugger. The Cortex-MO processor also has a hardware breakpoint unit. This is limited to four
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breakpoints. Because many microcontrollers use flash memory, which can be reprogrammed
a number of times, using software breakpoint instruction allows more breakpoints to be set at
no extra cost. The breakpoint instruction has an 8-bit immediate data field. This immediate
value does not affect the breakpoint operation directly, but the debugger can extract this value
and use it for debug operation.

Instruction BKPT
Function Breakpoint
Syntax BKPT #<immed8>
BKPT <immed8>
Note BKPT instruction can have an 8-bit immediate data field. The debugger can

use this as an identifier for the BKPT. For example,
BKPT #0 ; breakpoint, with immediate field equal zero
Alternative syntax without the “#” is also allowed. For example,
BKPT O ; This is the same as BKPT #0.

The YIELD instruction is a hint instruction targeted for embedded operating systems. This
is not implemented in the current releases of the Cortex-MO processor and executes as
NOP.

When used in multithread systems, YIELD can indicate that the current thread is delayed (e.g.,
waiting for hardware) and can be swapped out. In this case, the processor does not have to
spend too much time on an idle task and can switch to other tasks earlier to get better system
throughput. On the Cortex-MO processor, this instruction is executed as an NOP (no operation)
because it does not have special support for multithreading. This instruction is included for
better software compatibility with other ARM processors.

Instruction YIELD

Function Indicate task is stalled

Syntax YIELD

Note Execute as NOP on the Cortex-MO0 processor

Pseudo Instructions

Apart from the instructions listed in the previous section, a few pseudo instructions are also
available. The pseudo instructions are provided by the assembler tools, which convert them
into one or more real instructions.

The most commonly used pseudo instruction is the LDR. This allows a 32-bit immediate data
item to be loaded into a register.
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Instruction Set
Pseudo Instruction LDR
Function Load a 32-bit immediate data into register Rd
Syntax LDR <Rd>, =immed32
Note This is translated to a PC-related load from a literal pool. For example,
LDR RO, =0x12345678 ; Set RO to hexadecimal value 0x12345678
LDR R1, =10 ; Set R1 to decimal value 10
LDR R2, =‘A’ ; Set R2 to character ‘A’
Pseudo LDR
Instruction
Function Load a data in specified address (label) into register
Syntax LDR <Rd>, label
Note The address of label must be word aligned and should be closed to the
current program counter. For example, you can put a data item in program
ROM using DCD and then access this data item using LDR.
LDR RO, CONST_NUM ; Load CONST_NUM (0x17) in RO
ALIGN 4 ; make sure next data are word aligned
CONST_NUM DCD 0x17 ; Put a data item in program code
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Other pseudo instructions depend on the tool chain being used. For more information, please
refer to the tools documentation for details.
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Additional data

Embedded Systems

An Embedded System is a computer system that has computer hardware and software
embedded to perform specific tasks. In contrast to general purpose computers or personal
computers (PCs)' wbich can perform various types of tasks, embedded systems are designed
to perform a specific set of tasks. Key components of an embedded system include.
microprocessor or microcontroller, memory (RAM, ROM, cache), networking units
(Etllemet, WiFi adapters), input/output units (display, keyboard, etc.) and storage (such as
Hash memory). Some embedded systems have specialized processors such as digital signal
processors (DSPs), graphics processors and application specific processors. Embedded
systems run embedded operating systems such as real-time operating systems (RTOS).
Embedded systems range from low-cost miniaturized devices such as digital watches to
devices such as digital cameras, point of vending machines, appliances (such as washing
machines), etc.

IoT Hardware Devices

1. Sensors: A sensor is an [oT device that senses physical changes in the environment and
sends the data for manipulation via a network. Clouds store the data for future references.
Sensors monitor data and collect information constantly.

2. Microcontrollers: A microcontroller is a small computer that is capable of performing
operations. It sits on a semiconductor integrated circuit chip. Microcontollers usually operate
on a single function and hence differ from regular computers. They perform a variety of tasks
in a relatively simpler manner.

3. Wearable devices: Wearable devices are a benchmark revolution of the IoT industry. These
are lot devices that humans can wear on their bodies to regulate and perform a variety of
tasks. These wearables are capable of tracking glucose levels, monitor heart attack risks,
coagulation and asthma monitoring, daily step and calorie consumption tracking.

4. Basic devices: Traditional computers such as desktops, tablets and cellphones are still an
integral part of any IoT ecosystem. Desktops offer users with simple access to a lot of
information and cell phones allow remote access to lot devices using APIs.

5. Datasheets: Datasheets give the details about the functionality of any hardware
components. It is important to study the datasheet of any hardware before making a purchase
to make sure you are buying the right product.

Datasheets offer you detailed information on the parameters of the hardware, its physical
size, different voltage and electrical parameters, maximum current usage and the number of
input/output pins. Datasheets are highly useful as they give you all the information you need
before buying complicated hardware components.

6. Integrated circuits: Integrated circuits are chips. They are microcontrollers. You can buy
empty chips in the market and download any kind of design into the chip. They are made
using Silicon and it is packaged into shapes of rectangles. These chips contain complicated
logic circuits, gates, registers, switches, I/O terminals and flip flops.
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Integrated circuits do a variety of functions, they can perform arithmetic and logical
calculations. They act as processors too. They contain binary coded information which is
programmed to perform a set of tasks.

Standard chips are available in the market that perform a fixed set of operations. You can also
construct chips to perform your desired set of functions and these are known as custom made
chips.

IoT Hardware Providers

Various companies have come up with their own personalized IoT hardware and software
and many emerging companies are adapting to these policies. However, the most common lot
hardware providers are listed below:

a. Adafruit is best if you want to get hands-on experience with IoT. The company sells IoT
DIY kits with an online guide to help you through the initial setting up. You can interact,
manipulate and store your data.

b. Raspberry Pi is best at student level to get hands-on experience with IoT. You can interact,
manipulate and store your data.

b. Arduino, the company brands microcontrollers, IoT kits and software tools.

c. Lantronix provides solutions for the IoT such as smart hardware, networking, engineering
and artificial intelligence.

d. Espressif can interconnect with the system to provide wifi and bluetooth. It has high level

integration. It uses low power and has a robust design.
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