PART-A ($10 \times 2=20$ Marks)

1. Why class C power amplifier offers high efficiency.
2. Draw the frequency response of $C E$ amplifier with and without feedback.
3. In a differential amplifier $\mathrm{Ad}=52$ and $\mathrm{Ac}=0.5$, find CMRR.
4. Draw a simple MOS current mirror and write the expression for the output current.
5. Define Noise margin.
6. A common source amplifier has $\mathrm{Rs}=200 \Omega$ and $\mathrm{Rin}=10 \mathrm{k}$ and $\mathrm{Av}=-150$. Calculate Avs.
7. Derive output resistance of common collector amplifier.
8. In a MOSFET amplifier $g_{m}=8 \mathrm{mAN}$ and $r_{o}=2 \mathrm{M} \Omega$ and $R_{D}=4.7 \mathrm{~K} \Omega$. Calculate the voltage gain of the amplifier.
9. For the circuit shown, write the input and output loop equations.

10. What are the factors that affect the stability of the operating point.

Part - B ($5 \times 16=80$ marks $)$

11.(i) Explain class B power amplifier and derive for its efficiency.
(ii) Define and derive for feedback.
12.a.(i) Draw a discrete common drain MOSFET amplifier and derive expressions for $A_{V s}, R_{\text {in }}$ and R_{0} with equivalent circuits .
(ii) Briefly explain operation of CMOS inverter.
(OR)
12.b. Draw a NMOS inverter with resistive load and derive for $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IH}}$ and V_{OH} and hence NM_{L} and NM_{H}.
13.a.(i) Draw a Cascode amplifier and with equivalent circuit derive for $A V$.
(ii) Draw a JFET amplifier in common gate configuration and with equivalent circuit derive for $A_{v}, R_{\text {in }}$ and R_{0}.
13.b.(i) For the circuit shown calculate the voltage gain $A_{V}, R_{\text {in }}$ and R_{0}.
(ii) Draw a Darlington amplifier and derive for A_{V} and $R_{i n}$ with equivalent circuit.

$$
\begin{aligned}
& \text { hie }=120 \\
& \text { hie }=7.8 \mathrm{~K}
\end{aligned}
$$

14.a. Derive for stability factors S, S^{\prime} and $S^{\prime \prime}$ for voltage divider or self bias for BJT.
(OR)
14.b.(i) Briefly explain thermal stability.
(ii) For the circuit shown calculate $I_{C Q}, V_{C E Q}$ and $I_{B Q}$ for $h f e=100$, he $=300$. Comment on the result.
15.a.(i) Draw a NMOS common source amplifier with PMOS current source as active load. (4)
(ii) Draw the equivalent circuit of the active load and derive for the output impedance.
(iii) Draw the equivalent circuit of amplifier and derive for its gain.
(OR)
15.b.(i) Draw a MOS current steering circuit with two sink and two source terminal and derive expressions for all terminal current s in terms of reference current.
(ii) For the circuit shown, derive the expressions for resistances offered by M_{2} and M_{3} and hence write the expressions for the voltage gain offered.

(0.15b)

