Assembler- an overview

Assembler accepts ALP as input & produces its

machine language equivalent along with other

information for the loader (like externally defined
symbols)

T Machine Language
Y2897, Assembler & other information
1 for the loader
‘Databasesl

Systems Programming by Prof. Sanjay Naravadkar

01-03-2023

01-03-2023

Types of ALP statement

. Assembler Directives (Pseudo op instruction)

- Directs the assembler to take action
- Non executable part of the program
- Not included in the final object code
- Examples: ASSUME, USING, START, END etc.

. Declarative statements

- Declare symbols & assign values to them
- Example: First DC F'4’

. Imperative statements

- Executable assembly language instructions
- Assembler translates them into object code
- Examples: L, A, ST instruction

Systems Programming by Prof. Sanjay Naravadkar

Design of assembler- Statement of Problem

Consider ALP of IBM 360/370 machine for addition of 2
numbers/constants:

TILAK START 0
USING *, 45

L 1, First

A 1, Second

ST 1, Result
First DC F ‘4’
Second DC F‘5°
Result DS 1F

01-03-2023 E N D Systems Programming by Prof. Sanjay Naravadkar

Description of the statement of problem

* START — Indicates to the assembler the start of the ALP
* TILAK - Name of the ALP (assembler passes it to the loader)
* USING- States that register 15 is the base register

 L(Load), A (Add) & ST (Store) are the assembly language
instructions using registerl as an accumulator

 L,A & ST are 32 bit instructions (requires 4 locations each for
storage)

* DC F’4’: Define Constant of full word size & its value = 4
* DS 1F: Define Storage of 1 full word for copying result

* Full word = 32 bit in IBM 360 machine

* END-End of the ALP

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

Design of assembler- Statement of Problem
Consider ALP of IBM 360/370 machine for additionof 2 Pass-1 operations for given problem

numbers/constants:

Pass-1 operation of assembly process
TILAK START 0 Relative Mnemonic instructions
USING ¥ 15 address
L 1, First ¢ L2, ={D,15)
A 1, Second 4 A 1,-(0,15)
ST 1, Result 8 ST 1,-(0,15)
First DC F‘'4 12 4
Second DC F*5 16 5
Result DS 1F 20 -
END

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar 5

Pass-2 operations for given problem

Pass-2 operation of assembly process
Relative Mnemonic instructions
address

0 L 1,12(0,15)
4 A 1,16(0,15)
8 ST 1,20(0,15)
12 4
16 5
20 -

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

01-03-2023

Functions of Pass-1 of the assembler

1. Determine length of machine instructions
(MOTGET1)

. Keep track of Location Counter (LC)

. Remember values of symbols until Pass-2 (STSTO)
. Process some pseudo-ops like DS, DC (POTGET1)

. Remember literals (LITSTO)

on A W N

In brief,
Pass-1 defines symbols & literals

Systems Programming by Prof. Sanjay Naravadkar

Pass-1 of assembler: An overview

Initialize
v
Read [« - "
Store label in ST
- with LC value
STSTO
No
< USING
DROP
Search . - —
POT oun END o
POTGET
vDS,DC
Not Found -
Determine
Search length of data
MoT space required
MOTGET l
* Process Update
Get length) P _
of Instruction »| Literals | | Location >
LITSTO Counter (LC)

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

Functions of Pass-2 of the assembler

Look up value of symbols (STGET)
Generate object code (MOTGET2)
Generate data (for DS, DC & literals)
. Process Pseudo-ops (POTGET2)

B w N e

In brief,
Pass-2 generates the object program

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

Pass-2 of assembler: An overview

Initialize
Read
N
Search END
Pseudo-Op Table |Found . Type? -] CLEAN.UP
(POT) AND EXIT
POTGET a
|N°l found Convertand | v
o
output
Sgarch constants g
Machine-Op Table g
o
(MOT) \l/ 5
MOTGET Determine =
length of
data space
Get instruction
length, type,
and binary code A
Indicate
N available
Evaluate operand base register
expressions by {87)
searching for
values of symbols
- Indicate
STGET unavailable
base register
\ (BT)
Assemble together
the parts of the
instruction
\ \
Update
Lacation \/ \Y/
01-03-2023 Sy§ tems:@m@rarlnrg ng by Prof. Sanjay Naravadkar
LC)

&

Data bases/structures used by assembler phases

Input source program

Location Counter (LC) - used to keep track of each
instruction’s location

Machine Opcode Table (MOT)- define opcode & size of each
instruction (2/4/6 bytes)

Pseudo Opcode Table (POT)- define assembler directives &
action to be taken

Symbol Table (ST)- store each label & its value
Literal Table (LT)- Store each literal & its assigned location

Additional data structures in pass-2:

01-03-2023

¢

a

@

Base Table (BT)- Indicates availability of base register

Work-space INST- Hold various parts of each instruction like
binary opcode, register fields, length, displacements etc.

Work-space PRINT LINE — used to produce a printed listing
Work-space PUNCH CARD - used to produce a punched card

Systems Programming by Prof. Sanjay Naravadkar

11

01-03-2023

Source |
deck ;

Copy of
source deck

Location
Counter (LC)

o — — — — — — —

Pseudo-Op
Table (POT)

.~

o e — — — — — — — — — —

|
X

|
| Punch card
|

Machine-
instruction
(INST)

Object |
/1 \\ deck
7 A ‘
N /
Pass 2
of
assembler
R | Listing
AR '
| JHIRER L7
| \
Machine- | l | |1 || \
OpTable | || |'|l&
(NOT) L | N Location
L)) || Counter (LC)
| : e
o _symoor [yt
Table (ST) | | LS
|] | Print line
b |
|| l |
Literal L1, 1
Table (LT) |
|
|
|
|
|

Pseudo-Op
Table (POT)

) Base Table
Systems Programming by Prof. t@ryay Ngravadkar

Format of MOT (IBM 360 machine)

* Fixed sized table

* Contents are not filled or altered during assembly

process

* Number of entries = number of assembly language
instructions

* Size of each entry of MOT = 6 bytes

Mnemonic
opcode

(4 bytes)
(characters)

Binary
opcode
(1 byte)
(Hex)

Instruction
length

(2 bits)
(binary)

Instruction
format

(3 bits)
(Binary)

Not used
in this
design
(3 bits)

01-03-2021

adkar

13

Format of POT (IBM 360 machine)

* Also fixed sized table like MOT
* Pseudo-op = Assembler directive

* Pseudo-opis standard label (USING, EQU, END etc)

* Each pseudo-op is listed with an associated pointer
(24 bit physical address of the AL program)

* Size of each entry of POT = 8 bytes
Pseudo-op Address of routine to

(5-bytes) process
(Characters) Pseudo-op (24 bits)

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

Format of Symbol Table (ST) & Literal Table (LT)

* Lists all the symbols in ST & literalsin LT
* Same format for ST & LT
* Each entry of ST/LT = 14 bytes

 Symbol table for the problem taken is:

01-03-204

3

Symbol Value Length Relative/
(8 bytes) (4 bytes) (1 byte) Absolute
(characters) (Hex) (Hex) (1 byte)
(Character)

TILAKbbb 0000 01 “R”
Firstbbb 000C 04 “R”
Secondbb 0010 04 “R”
Resultbb 0014 04 “R”

Systems Programming b

Prof. Sanjay Naravadkar

15

Format of Base Table (BT) for Pass-2

* BT gives availability/unavailability of base register

* Total 15 entries in BT (one each for base register)
 Each entry =4 bytes

Availabilty indicator Designated relative address
(1 byte) (Contents of base register)
(Character) (24 bits)
llN"
“Y" 0000 00
* Y = Register available as base register by USING
pesudo-op

* N= Register unavailable as base register by DROP
pesudo-op

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar 16

Detailed Algorithms of Assemblers

Pass-1 Algorithm:

Page 74/system programming
/ JOHN J. DONOVAN

Pass-2 Algorithm:

Page 75/system programming
/ JOHN J. DONOVAN

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

17

o

b

01-03-2023

Pass-1 algorithm

Initialize Location Counter LC=0

Read card pointed by LC

Search POT for particular Pseudo-op

a) If DC or DS, then update LC to proper value, Goto step 5

b) If EQU, then evaluate operand field & assign value to the label
field, Goto step 7

c) If USING or DROP, then Goto step 7

d) If END, then assign storage for literals, rewind & reset copy
Goto Pass-2

Search MOT

a) Obtain instruction length L from MOT

b) Process literals (if present) & enter them to LTSTO

If instruction has label, then assign value of LC to symbol in STSTO

Update LC i.e. LC=LC+L

Write copy of card on file for use by Pass-2

Goto step 2

Systems Programming by Prof. Sanjay Naravadkar 18

01-03-2023

)

le

Pass-2 algorithm
Initialize Location Counter LT =1

Read card pointed by LC

Search POT for particular Pseudo-op

a) If DC, update LC to proper value

b) It DS, define constant & insert in assembled program, Goto step 5
¢) If EQU, then Print listing, Goto step 2

d) If USING, define base reg & value in BT, Print listing & Goto step-2
e) If DROP, define base reg not available, Print listing & Goto step-2
f) If END, then generate literals in literal table (LTGEN), STOP
Search MOT for Instruction type, Op-code & length (L)

a) If type = SI or RR, then evaluate registers (both) & enter into 2* byte,
Goto step 5

b) If type = RX, then evaluate register & index expression
& enter in 2'? byte
Compute Eff. Address (EA) = Base reg. contents (B) + Displacement (D)
Record B & D into 3" & 4™ byte
Punch & print assembly listing line
Update LC i.e. LC =LC + LL
Goto step 2

Systems Programming by Prof. Sanjay Naravadkar 19

Look for modularity: Modular design of Assembler

 Assembleris a coordinated collection of number of
subroutines/functions each of relatively small size
& complexity (instead of single program of
thousands of source statements)

* Typical functions in assembler passes:

MOTGET1, MOTGET2, POTGET1, POTGETZ2, STSTO,
READ1, READ2, STGET etc.

* Being smaller sizes of functional modules:

— Small software development lifecycle

— Simpler debugging

Assembler Pass-1 functional routines

Function Operation

READ1 Reads source assembly card

POTGET1 Search POT for a match with that of source card
MOTGET1 |Search MOT for a match with that of source card

STSTO Store a label & its associated value in Symbol Table (ST)
LTSTO Store a literal in Literal Table (LT)

WRITE1 Write a copy of source on storage device for use in pass-2
DLENGTH Determine storage space required in DS & DC pseudo-ops
EVAL Evaluate expression having constants & symbols

STGET Search ST for specific symbol

LITASS Assign storage locations to each literal in the LT

01-03-2023

Systems Programming by Prof. Sanjay Naravadkar

21

A bler Pass-2 functionalrouti

01-03-204

Function T[Operation

READ2 Reads source card from the file copy

POTGET2 |Sameasinpassl

MOTGET2 |Sameasinpass 1

EVAL Sameasinpass 1l

PUNCH Punch the card with the object code

PRINT Print relative location & generated object code

DCGEN Process the field of DC pseudo-op to generate object code

DLENGTH |Sameasinpassl

BTSTO Insert data into appropriate entry of Base Table (BT)

BTDROP |Insert “unavailable” indicator into proper BT entry

BTGET Search BT for available base registers for calculation of
effective address

,LTGEN Generate code for literals.: ..., varavscinr

22

Drawback of single-pass assembler

* In Single pass assembler: Forward Reference
problem

 Forward reference problem:

- Refers symbols/variable before their
declaration

- Such symbol can not be recognized

- In earlier example, First, Second & Result are
address symbols referred in ALP before
declaration

- Hence, 2-pass assembler is designed....

01-03-2023 Systems Programming by Prof. Sanjay Naravadkar

23

