B.E. (Full-Time)DEGREE END SEMESTER EXAMINATIONS, Nov./Dec. 2011 ELECTRICAL AND ELECTRONICS ENGINEERING

THIRD SEMESTER

EE9202 ELECTROMAGNETIC THEORY

(REGULATION 2008)

Time : 3 hr

Max. Marks : 100

Answer ALL Questions

PART-A (10x2=20 marks)

- 1. What are the characterizing parameters of electromagnetic fields?
- 2. Plot **A** and gradient of **A**, where $\mathbf{A} = x^2 + y^2$.
- 3. Explain uniform and non-uniform electric fields with suitable examples.
- 4. Explain how zero electric field can be achieved by using large uniformly charged sheets.
- 5. What is the line integral of magnetic field around the following closed paths.

- 6. Derive the self inductance of a long solenoid.
- 7. Calculate the average power dissipated per unit volume in a lossy dielectric medium with $\epsilon_r = 4.4$, tan δ =0.001 if E =10kV/cm at f=5MHz.
- 8. A metal ring is placed on a solenoid. What will happen to the ring when the solenoid is energized? Why?
- 9. Calculate the skin depth and wave velocity at 2MHz in Aluminium with conductivity 40MS/m and $\mu_r = 1$.
- 10. With a suitable figure, show the direction of propagation of electromagnetic for given E_z and H_v

PART -- B (5x16=80 marks)

- (i) Derive the Electromagnetic wave equation in frequency domain.(8)
 - (ii) Derive the characterizing parameters for free space ,lossless and lossy dielectric.(8)

12.a

11

- (i) Derive E due to a long transmission line using Gauss's law .(8)
 - (ii) Two long parallel conductors of a DC transmission line separated by 2 meter have charges of $\rho_i = 5\mu c$ /m of opposite signs. Both the lines are 8 meter above the ground. What is $|\mathbf{E}|$ at 4 meter directly below one of the lines. (8)

\$

- 12.b (i) Given that $E_1 = 2 a_x 3 a_y + 5 a_z$ V/m at the charge free dielectric interface (plane of interface is XY plane). Calculate D_1, D_2 and the angles θ_1 and θ_2 . (8)
 - (ii) Derive the formulae used.(8)

3

- 13.a (i) Derive the force between the current carrying conductors.(4)
 - (ii) Calculate the force experienced by a rectangular current loop carrying current I_2 , in the presence of a long filamentary current I_1 as shown.(12)

- 13.b (i) Derive for mmf in a series magnetic circuit .(8)
 - (ii) An airgap of 0.2 cm is cut across a steel ring of square cross section of area 25cm². The average length of the flux path around the ring is 5m. What is the mmf required to establish a flux of 2.5mWb in the air gap. Assume $\mu_r = 1100.(8)$
- 14.a Consider a parallel plate capacitor having a plate area of 1cm^2 each, where the plates are separated by a distance of 0.1mm by a dielectric having the following properties at $1 \text{MHz} \epsilon_r = 2, \sigma = 10^{-7} \text{ S/m}$. Calculate C, R, Id, Ic and tan δ . Derive the formulae used.(8+8)

(OR)

- 14.b (i) What is the need for Maxwell's contribution in electromagnetic fields and derive the same. (10)
 - (ii) Explain the working principle of Faraday's Disc generator, derive the output equation.(6)
- 15.a (i) Explain in detail the skin effect. (8)
 - (ii) Calculate the suitable frequency for communication by wireless with undersea craft at a depth of x =11m from the sea level for **E** at sea surface =1V/m and $E_x = 1\mu V/m$

(OR)

- 15.b (i) Draw the electromagnetic frequency spectrum. (4)
 - (ii) Explain the positive and negative effects of EMF.(4)
 - (iii) Explain how a material changes its behavior with frequency and mention the criteria (8)