Code No: R161110 (R16)

SET - 1

(7M)

I B. Tech I Semester Supplementary Examinations, May/June - 2017 MATHEMATICS-II

(Numerical Methods and Complex Variables)

(Com. to ECE, EIE, E.Com.E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Give formula to find a reciprocal of a number using Newton-Raphson method. (2M)
 - b) Define: (i) Averaging operator μ (ii) shift operator E. (2M)
 - The value of $\int_{1}^{2} \frac{dx}{x} dx$ by Simpson's $\frac{1}{3}^{rd}$ rule (taking n = 4) is_____
 - d) State orthogonality of legendre's polynomials. (2M)
 - e) Using Cauchy's theorem evaluate $\int_C \frac{e^{2z}}{z-2} dz$ where C is |z| = 1. (2M)
 - f) Determine the poles of the function $f(z) = \frac{z}{\cos z}$. (2M)
 - g) Define Isolated singularity with example. (2M)

PART -B

- 2. a) Solve $x = 1 + \tan^{-1} x$ by iteration method.
 - b) Using Newton Raphson method, find the root of the equation $f(x) = e^x 3x$ that (7M) lies between 0 and 1.
- 3. a) Following are the measurements *T* made on a curve recorded by the oscilograph (7M) representing a change of current I due to a change in the conditions of an electric current

T:	1.2	2.0	2.5	3.0
I:	1.36	0.58	0.34	0.20

Using Lagrange's formula find I at T = 1.6.

b) State appropriate interpolation formula which is to be used to calculate the value (7M) of $e^{1.75}$ from the data and hence evaluate it.

х	1.7	1.8	1.9	2.0
$y = e^x$	5.474	6.050	6.686	7.389

- 4. a) Evaluate $\int_0^1 \sqrt{1+x^3} \, dx$ taking h = 0.1 using Simpson's $\frac{1}{3}^{rd}$ rule. (7M)
 - b) Using Runge-Kutta method find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 take (7M) h = 0.2.
- 5. a) Evaluate $\int_0^2 (8 x^3)^{1/3} dx$ using $\beta \Gamma$ functions. (7M)
 - b) Show that $(1 2xt + t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x)t^n$. (7M)
- 6. a) Find the conjugate harmonic of $u = e^{x^2 y^2} \cos 2xy$. Hence find f(z) in terms of (7M)
 - b) Let C be closed contour described in the positive sense. (7M) Let $g(a) = \int_{c} \frac{z^3 + 2z}{(z-a)^3} dz$. Show that $g(a) = 6\pi ia$ if a is with in c and g(a) = 0 when a is outside C.
- 7. a) Find the Laurent series of the function $f(Z) = \frac{z}{(z+1)(z+2)}$ about z = -2. (7M)
 - b) Find the residue of $\int_{c} \frac{z^2}{1-z^4}$ dz at these singular points which lie inside the circle |z| = 1.5.