

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

QUESTION BANK

Department	AERONAUTICAL ENGINEERING				
Course Title	COMPU	UTATIONAL	AERODYNA	MICS	
Course Code	AAEC25				
Program	B.Tech				
Semester	VI				
Course Type	CORE				
Regulation	UG-20				
	Theory Practical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3 1 4				
Course Coordinator	Mr. A Rathan Babu, Assistant Professor.				

COURSE OBJECTIVES:

The students will try to learn:

Ι	The concepts of grid generation techniques for simple and complex domains to model fluid flow problems.
II	The aspects of numerical discretization techniques such as finite volume and finite difference methods.
III	The mathematical modeling of different classes of partial differential equations to show their impact on computational fluid dynamics.
IV	The characteristics of different turbulence models and numerical schemes for estimating the criteria of stability, convergence, and error of fluid flow problem.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the concepts of computational fluid dynamics and its	Understand
	applications in industries as a tool for fluid analysis.	
CO 2	Choose the type of flow from the finite control volume and	Apply
	infinitesimal small fluid element for the fluid flow analysis.	
CO 3	Select the quasi linear partial differential equation for estimating	Apply
	the behavior in computational fluid dynamics.	

CO 4	Identify CFD techniques for relevant partial differential equations	Apply
	for getting analytical solutions for fluid flow problems.	
CO 5	Make use of finite difference approach for numerical formulations	Apply
	based on fluid mechanics and heat transfer concepts for getting the	
	solutions of fluid flow problems.	
CO 6	Utilize the grid generation and transformation techniques in	Apply
	implementation of finite difference and finite volume methods in	
	solving complex fluid and aerodynamic problems.	

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this	CO's
		MODUL	F. I	
		INTRODUC		
D	DT A DDODLEM SOLVIN		TICAL THINKING OF	IESTIONS
	ARI A-PROBLEM SOLVII		IIICAL IHINKING QU	
1	List out the models of flow	Understand	The learner to recall the	COT
	for a continuum fluid.		type of flow with respect	
	Differentiate the control		fixed space and moving	
	volume and infinitesimal		element and explain the	
	fluid element fixed in space		different types of fluid	
	with the fluid moving		elements	
	through it with the help of			
	neat sketch.			
2	Justify how the continuity	Understand	The leaner to recall the	CO 1
	equation derived from these		basic governing equations	
	flow models can be		and explain the nature of	
	converted from conservative		those in different types of	
	to non-conservative form.		flows.	
3	Construct the momentum	Understand	The leaner to recall the	CO 1
	equation in conservation		basic governing equations	
	form using infinitesimal		and explain the nature	
	small fluid element moving		of those in different types	
	with the flow.		of flows.	
4	Build the energy equation in	Apply	The learner to recall the	CO 1
	conservation form using		governing equations,	
	infinitesimal small fluid		explain the importance	
	element fixed in space for		of partial differential	
	compressible in viscid flow.		equations and apply in	
			the analysis of flow	

5	Illustrate the non-conservative form of governing equations. Derive continuity equation in non-conservation form using infinitesimal small fluid element moving in space.	Understand	The leaner to recall the basic governing equations and explain the nature of those in different types of flows.	CO 1
6	Differentiate shock fitting and shock capturing methods with the suitable diagram.	Understand	The learner to recall different methods of CFD and explain concept of shock fitting method in CFD.	CO 1
7	Construct the generic form of a partial differential equation used in CFD and explain the significance of each term.	Apply	The leaner to recall the basic governing equations, explain the nature of those in different types of flows and develop the equation.	CO 2
8	Build the energy equation in conservation form using infinitesimal small fluid element moving in space for compressible viscous flow.	Apply	The leaner to recall the basic governing equations, explain the nature of those in different types of flows and develop the equation.	CO 2
9	Illustrate the energy equation in conservation form using infinitesimal small fluid element fixed in space in terms of internal energy for compressible flow.	Apply	The leaner to recall the basic governing equations, explain the nature of those in different types of flows and develop the equation.	CO 2
10	List out the continuity equation in conservation form using infinitesimal small fluid element moving with the flow.	Apply	The leaner to recall the basic governing equations, explain the nature of those in different types of flows and develop the equation.	CO 2
1	PART-B LO Which three disciplines is CFD derived from? Discuss some of the advantages of using CFD?	Understand	The learner to recall the concepts of CFD by summarizing its use in different applications	CO 1

2	How CFD is helpful as a research tool, a design tool, and an educational tool in analyzing fluid dynamical problems.	Understand	-	CO 1
3	What is substantial derivative? Derive the expression for time rate of change of fluid element. Define local derivative, convective derivative.	Understand	The learner to recall the concept of substantial derivative and explain the time rate of fluid element.	CO 1
4	Illustrate the use of conservation form of the equations so important for the shock-capturing method by considering the flow across a normal shock wave.	Understand	The learner to recall the basic concepts of conservation form of the equations and illustrate its importance in fluid flow.	CO 1
5	How Computational Fluid Dynamics is vital in the Industrial manufacturing. fields	Understand	-	CO 1
6	Explain the computer architectures and list the types of computer architectures.	Understand	The learner to recall different Computer simulation packages available in industry and outline the procedures.	CO 1
7	Explain the physical meaning of Divergence of Velocity that frequently appears in the equations of fluid dynamics. Define substantial Derivative and explain its physical meaning.	Understand	The learner to recall the concept of divergence of velocity and explain the time rate of fluid element.	CO 1
8	Discuss some of the applications of CFD and explain why it is so important in the modern study of fluid mechanics?	Understand	-	CO 2
9	Describe the steps involved in Computational Fluid Dynamics (CFD) process.	Understand	-	CO 1

10	How Computational Fluid Dynamics is vital in the Automobile engineering fields. Discuss.	Understand	-	CO 1
11	What are the steps involved in Computational Fluid Dynamics (CFD) process. Describe in detail.	Understand	-	CO 1
12	Discuss applications of CFD in civil engineering	Understand	-	CO 1
13	Write applications of CFD in Naval architecture applications.	Understand	-	CO 1
14	What are the available coding techniques for numerical problems? List few.	Understand	-	CO 1
15	Compare and contrast the viscous flow and inviscid flow.	Understand	The learner has to recall the definitions of types of flows in fluid dynamics and compare the flow types.	CO 1
	PART-C SH	IORT ANSW	/ER QUESTIONS	
1	Define substantial derivative with example	Understand	-	CO 2
2	CState the detachment distance in blunt nosed body	Understand	-	CO 2
3	State any two applications of CFD in engineering.	Understand	_	CO 2
4	Define divergence of velocity in aerodynamics.	Understand	_	CO 2
5	State the local derivative with the suitable example.	Understand	-	CO 2
6	List the forces in Newton's second law in diagrammatic form.	Understand	_	CO 2
7	Distinguish conservative and non-conservative form of the governing equation for control volume.	Understand	-	CO 2
8	State the proper physical boundary condition for a viscous flow	Understand	-	CO 2

9	Mention the applications of CFD in industrial manufacturing.	Understand	-	CO 2
10	Distinguish the Newtonian and Non-Newtonian fluids.	Understand	-	CO 2
10	Distinguish the Newtonian and Non-Newtonian fluids.	Understand	-	CO 2
11	List the types of computer architectures.	Understand	-	CO 2
12	Why it is so important in the modern study of fluid me chanics?	Understand	-	CO 2
13	What are the steps involved in CFD.	Understand	-	CO 2
14	List out the modes of fluid flow.	Understand	-	CO 2
15	What are different numerical methods?	Understand	-	CO 2
16	List some simple coding techniques for numerical problems	Understand	-	CO 2
17	What are the preprocessor steps in CFD?	Understand	-	CO 2
18	What is the role of CFD in heat transfer?	Understand	-	CO 2
19	What are inviscid flows?	Understand	-	CO 2
20	Write any two applications of CFD in engineering.	Understand	-	CO 2
		MODULI	E II	
MA	THEMATICAL BEHAVIO	R OF PART	TIAL DIFFERENTIAL E	QUATIONS
	AND THEIR IMPACT O	ON COMPU'	TATIONAL AERODYNA	AMICS
	ART-A PROBLEM SOLVIN	NG AND CR	RITICAL THINKING QU	JESTIONS
1	Classify the following set of	Understand	The learner to recall the partial differential	CO 3
	two-dimensional inviscid		equations and be able to	
	steady flow of a		explain different methods	
	compressible flow using			
	Eigen value method:			
	Where u', v' are small			
	perturbation velocities			
	measured relative to the free			
	Stream velocity.			

2	Justify the classification of the following quasi-linear partial differential equations using Cramer's rule: $a_1\frac{\partial u}{\partial x} + b_1\frac{\partial u}{\partial y} + c_1\frac{\partial v}{\partial x} + d_1\frac{\partial v}{\partial y} =$ $f_1,$ $a_2\frac{\partial u}{\partial x} + b_2\frac{\partial u}{\partial y} + c_2\frac{\partial v}{\partial x} + d_2\frac{\partial v}{\partial y} =$ f_2 Where u and v are dependent variables, continuous functions of x and y and a1, a2, b1, b2, c1, c2, d1, d2, f1, f2 can be functions of x, y, u and v.	Understand	The learner to recall the partial differential equations and be able to explain different methods	CO 3
3	Illustrate the physical behavior of flows governed by hyperbolic equations with an example of steady, inviscid supersonic flow over a two dimensional circular arc airfoil.	Understand	The learner to recall the partial differential equations and explain basic features of hyperbolic equations	CO 3
4	Illustrate the physical behavior of flows governed by parabolic equations with an example of steady boundary layer flows. Explain PNS model for high speed flows and explain its merits.	Understand	The learner to recall the partial differential equations and be able to explain different methods to explain the parabolic equations nature	CO 3
5	Classify the following partial differential equations according to their nature as elliptic, parabolic, hyperbolic (a)Unsteady Thermal Conduction Equation (b)Laplace's Equation (c)Second-order wave equation (d)First-order wave equation	Apply	The learners to recall the basic features of partial differential equations explain different methods and classify as per their mathematical behaviour.	CO 3
6	Construct the Parabolized Navier-Stokes equations and well-posed problems.	Understand	Explain the Parabolized Navier-Stokes equations and well-posed problems.	CO 3

7	Discuss the mathematical and physical behavior of flows governed by Parabolic equations with an example of unsteady thermal conduction in two and three dimensions.	Understand	The learner to recall the partial differential equations and be able to explain different methods	CO 3
8	Build the mathematical and physical nature of flows governed by elliptic equations with an illustration of incompressible, inviscid flow. Explain Neumann and Dirichlet boundary conditions.	Understand	The learner to recall the partial differential equations and explain basic features of elliptic equations.	CO 3
9	Justify the philosophy of the Method of characteristics. Consider the full velocity potential equation for the steady, two dimensional supersonic flows and determine the equation for characteristic curves in the physical xy space and classify the nature of velocity potential equation based on Mach number.	Understand	Explain the philosophy of the Method of characteristics. Consider the full velocity potential equation for the steady, two dimensional supersonic flows and determine the equation for characteristic curves in the physical xy space and classify the nature of velocity potential equation based on Mach number.	CO 3
10	Illustrate the physical behavior of flows governed by hyperbolic equations with an example of steady, inviscid supersonic flow over a two dimensional circular arc airfoil.	Understand	The learner to recall the partial differential equations and explain basic features of hyperbolic equations	CO 3
	PART-B LO	ONG ANSW	ER QUESTIONS	
1	Classify the system of equation form the general equation for a conic section from analytical geometry and derive the expression.	Understand	The learner to recall the basic principles of fluid science to derive the governing equations.	CO 3

2	Illustrate the characteristic curve with the suitable diagram. Differentiate the left running and right running characteristics with the suitable example.	Understand	The learner to recall what flows is the available in fluid to transfer.	CO 3
3	Explain the mathematical and physical nature of flows governed by parabolic Equations with an illustration of a steady boundary layer flow.	Understand	The learner to recall the partial differential equations and explain basic features of parabolic equations	CO 3
4	Explore the boundary layer flow for the parabolic equation by considering the nose region with the neat sketch.	Understand	The learner to recollect necessity of derivative in the derivation of fluid flow equations.	CO 3
5	Illustrate the typical transient temperature distributions in a constant property fluid, starting from an impulsive increase in Tw2 from T1 to T2 at time zero.	Understand	The learner to recollect necessity of derivative in the derivation of fluid flow equations	CO 3
6	Explicit the general behavior of the different classes of partial differential equation – impact on physical and computational fluid dynamics with suitable example for each.	Understand	The learner to recollect the basic principles of fluid science to derive the governing equations to Understand the.	CO 3
7	Elucidate the domain and boundaries for the solution of hyperbolic equations for the three dimensional steady flow.	Understand	The learner to recall the partial differential equations and explain basic features of hyperbolic equations.	CO 3
8	Discuss the domain and boundaries for the solution of hyperbolic equations for the one and two dimensional unsteady flow with the suitable diagram.	Understand	The learner to recall the partial differential equations and explain basic features of hyperbolic equations.	CO 3
9	Describe the combustion process in a solid propellan	Understand	_	CO 3

10	Discuss the domain and boundaries for the solution of alliptic equations for the	Understand	The learner to recall the partial differential	CO 3		
	two dimensions with the		basic features of elliptic			
	suitable diagram.		equations.			
	PART-C SHORT ANSWER QUESTIONS					
1	Define quasi linear partial differential equations.	Understand	_	CO 3		
2	Define characteristic curve and its uses.	Understand	_	CO 3		
3	List the quasilinear partial differential equations by determining value of Determinant.	Understand		CO 3		
4	Define compatibility equation for method of characteristics.	Understand	_	CO 3		
5	State the boundary layer equations.	Understand	_	CO 3		
6	List the types of flow are governed by the elliptic equations.	Understand		CO 3		
7	List the types of fluid dynamic flow fields are governed by parabolic equations.	Understand	_	CO 3		
8	List the advantage of the compatibility equation	Understand	_	CO 3		
9	List the advantage of the compatibility equation	Understand	_	CO 3		
10	List the advantage of the compatibility equation	Understand	_	CO 3		
		MODULE	III			
BASIC ASPECTS OF DISCRETIZATION						
PA	ART A-PROBLEM SOLVIN	NG AND CR	TTICAL THINKING QU	JESTIONS		
1	Compare and contrast on the following properties of numerical solutions of fluid flows: i) Stability ii) Consistency iii) Accuracy iv) Convergence.	Understand	The learner to recollect the concepts of grid generation and understand the finite differences using Taylor series in the formulation	CO 4		
			of explicit equations.			

2	Illustrate the time marching solution for constructing the explicit finite difference module by considering one-dimensional heat conduction equation which is parabolic partial differential solution.	Understand	The learner to recollect the concepts of heat transfer, understand the finite differences using Taylor series in the formulation of explicit equations.	CO 4
3	Calculate the differential equation by considering unsteady, one-dimensional heat conduction equation with constant thermal diffusivity with the neat sketch.	Understand	The learner to recollect the concepts of heat conduction and understand the finite differences.	CO 4
4	Build the expressions for the first order forward difference and first - order rearward difference with respect to x and y. Sketch the appropriate finite- difference modules for each by using the discrete grid points.	Understand	The learner to recall the Taylor series expansion and outline the forward difference using finite differences.	CO 4
5	Sketch the finite- difference modules for second - order central second difference with respect to x, y and second - order central mixed difference with respect to x and y by justifying the expression.	Apply	The learner to recall the Taylor series expansion and outline the forward difference using finite differences.	CO 4
6	The learner to recall the Taylor series expansion and outline the forward difference using finite differences.	Understand	The learner to recall the concepts of finite difference and understand the grid generation.	CO 4
7	Illustrate a stable case by comparing the numerical domain include the entire analytical domain and does not include the entire analytical domain with the neat sketch.	Understand	Illustrate a stable case by comparing the numerical domain include the entire analytical domain and does not include the entire analytical domain with the neat sketch.	CO 4

8	Illustrate a stable case by comparing the numerical domain include the entire analytical domain and does not include the entire analytical domain with the neat sketch.	Understand	The learner to recollect different types of errors and explain different methods of its propagation.	CO 4
9	Justify the importance of grid generation in CFD process and discuss the difference between structured grid and unstructured grid.	Understand	The learner to recall the concepts of grid generation and compare the types of grids.	CO 4
10	Illustrate the unstructured hybrid grid showing the regular quadrilateral or hexahedra cells type structure near the solid walls.	Understand	The learner to recall the concepts of grid and show the types of grids.	CO 4
11	Compare structured and unstructured grids. Discuss various configurations of Body-fitted structured grids and multi-block grids with the help of sketches.	Understand	The learner to recollect the classification of grids and compare structured and unstructured grid.	CO 4
12	Summarize the hybrid grids of a turbine blade with film cool configuration for generation of unstructured grid with the suitable example.	Understand	The learner to recollect the classification of grids and explain in solid boundary application.	CO 4
13	Illustrate the triangle and tetrahedral cells for generation of unstructured grid with the suitable example.	Understand	The learner to recollect the classification of grids and explain in solid boundary application.	CO 4
14	Sketch the the quad tree grid with hanging nodes, nodes around an airfoil with staircase boundary approximation.	Understand	The learner to recollect the classification of grids and explain in solid boundary application.	CO 4

15	Compare structured and	Understand	The learner to recollect	CO A
10	unstructured gride Discuss	Understand	the classification of grids	004
	various configurations of		and compare structured	
	Body fitted structured grids		and unstructured grid	
	and multi block gride with		and unstructured grid.	
	the help of sketches			
	the help of sketches.			
	PARI-B L	UNG ANSW	ERQUESTIONS	<u> </u>
1	Obtain the expression for	Understand	The learner to recall the	CO 3
	first - order forward		Taylor series expansion	
	difference and first - order		and outline the forward	
	rearward difference by using		difference using finite	
	the Taylor series.		differences.	
2	Explain Lax method for one	Understand	The learner to recall the	CO 3
	dimensional wave equation		concept of stability	
	and explain the stability		criterion and relate the	
	criterion for hyperbolic		same to the hyperbolic	
	equations.		equations.	
3	Explain the explicit	Understand	The learner to recollect	CO 3
	formulation by using one		the concepts of heat	
	dimensional heat conduction		conduction and	
	equation as an example		understand the finite	
	with its relative merits and		differences.	
	demerits.			
4	Construct the implicit finite	Apply	The learner to recollect	CO 3
	difference module using		the concepts of heat	
	seven point spatial grid by		conduction understand	
	considering one-dimensional		the finite differences using	
	heat conduction equation		Taylor series and apply	
	which is parabolic partial		for parabolic partial	
	differential solution.		differential equation.	
5	Explain the yon Neumann	Understand	The learner to recollect	CO 3
5	stability method which is		the concepts of stability	
	used to study the stability		and understand the finite	
	properties of linear		differences	
	difference equations			
6	Construct a finite difference	Apply	The learner to recollect	CO 3
U	auotient by using the	дарриу	the concepts of heat	
	nolynomial approach by		transfer understand the	
	assuming the boundary and		finite differences using	
	obtain a expression for one		Taylor sories and apply	
	gided finite difference		for pershelia partial	
	sided minte difference.		differential equation	
			differential equation.	

7	List out the advantages and disadvantages of implicit approach and explicit approach.	Understand	The learner should recollect the explicit and implicit method and explain the advantages and disadvantages of them in industrial applications.	CO 3
0	the Fourier components of the round-off error.	Understand	concepts of Fourier transform and explain the errors in grid generation.	0.0.3
9	Explain the stability criterion depends on the form of the difference equation by considering the first order wave equation which is a hyperbolic behavior.	Understand	The learner to recollect the concepts of stability and understand the finite differences.	CO 3
10	Interpret the Courant number and Courant- Friedrichs-Lewy(CFL) condition and explain the physical behavior of CFL condition.	Understand	The learner to recollect the concepts of stability and understand the finite differences.	CO 3
11	Explain and sketch the structured multi-block body-fitted grid of the H-O-H type.	Understand	The learner to recall the concepts of grid and show the types of grids.	CO 3
12	Explain and sketch the structured curvilinear body-fitted of the C-H type.	Understand	The learner to recall the concepts of grid and show the types of grids.	CO 3
13	Illustrate the matching and non-matching block boundary interfaces of a multi-block-structured grid with a channel connecting two circular ducts.	Understand	The learner to recollect the classification of grids and able to explain in circular duct application.	CO 3
14	Discuss the structured multi-block body-fitted grid of the 'butterfly' type for internal flows.	Understand	The learner to recollect the classification of grids and explain in solid boundary application.	CO 3

15	Show the Cartesian mesh	Understand	The learner to recollect	CO 3
	around a solid boundary		the classification of grids	
	with immersed boundary		and able to explain in	
	method and Sketch cut-cell		solid boundary	
	configuration.		application.	
	PART-C SH	IORT ANSW	VER QUESTIONS	
1	What are the errors that	Understand	_	CO 4
	influence numerical			
	solutions the PDE?			
2	Define Courant number.	Understand	_	CO 4
	What is the important			
	stability criterion for			
	hyperbolic equation?			
3	Define discretization error	Understand	_	CO 4
	in numerical approach.			
4	Define Round-off error and	Understand	_	CO 4
	its effects.			
5	Write disadvantages of the	Understand	_	CO 4
	implicit approach.			
6	Define the need of grid	Understand	_	CO 4
	point in discretization.			
7	State CFD technique and	Understand	_	CO 4
	list the approaches.			
8	List out the types of errors	Understand	_	CO 4
	and state them.			
9	What is truncation error in	Understand	_	CO 4
	numerical approach.			
10	Define first order forward	Understand	_	CO 4
	difference with example.			
11	State reflection boundary	Understand	_	CO 4
	condition.			
12	List the pros and cons of	Understand	_	CO 4
	higher – order accuracy.			
13	What are the discrete gird	Understand	_	CO 4
	points.			
14	Define finite- difference	Understand	_	CO 4
	modules.			
15	Write two differences	Understand	_	CO 4
	between structured and			
	unstructured grids?			
16	Draw triangular and	Understand	_	CO 4
	Tetrahedral cells.			

17	Draw the structured curvilinear body-fitted grid of the C-type.	Understand	_	CO 4
18	Listout the methods for the curved solid bodies – non uniform Cartesian grids	Understand		CO 4
19	Draw the structured curvilinear body-fitted grid of the O-type.	Understand	_	CO 4
20	Draw the structured curvilinear body-fitted grid of the H-type.	Understand	_	CO 4
21	Draw the Cartesian grid with non-uniform cell sizes for a cavity.	Understand	_	CO 4
22	Write the advantages of adaptive grid?	Understand	_	CO 4
23	Distinguish Cartesian grid and non-uniform Cartesian grids	Understand	_	CO 4
24	List out the types of Body fitted structured grids.	Understand	_	CO 4
25	Draw the structured curvilinear body-fitted grid of the I-type for turbo machinery blades.	Understand		CO 4
		MODULE	IV	
	(CFD TECHN	IIQUES	
PA	ART A- PROBLEM SOLVI	NG AND CI	RITICAL THINKING QU	UESTIONS
	Construct the explicit MacCormack Technique for a steady, two-dimensional, supersonic, inviscid flow field in(x, y) space using the following generic conservation form without source terms:where F and G represent flux vectors formed from the governing equations.	Understand	The learner to recall the different techniques for implicit formulations, summarize the methods and apply McCormack method	CO 5

2	Illustrate the sequence of operation in a Computational fluid dynamics procedure which employs the SIMPLER algorithm with the flow chart.	Understand	The learner to recall the processes of CFD in fluid dynamics applications and Summarise the processes involved in it	CO 5
3	Illustrate the sequence of operation in a Computational fluid dynamics procedure which employs the PISO algorithm with the flow chart.	Understand	The learner to recall the processes of CFD in fluid dynamics applications and Summarise the processes involved in it	CO 5
4	Justify the boundary condition for the pressure correction method with schematic of staggered grid by incompressible viscous flow.	Understand	The learner to recall the different techniques for implicit formulations and summarize the numerical methods.	CO 5
5	Illustrate the relaxation technique for the inviscid, incompressible, two dimensional, irrotational flows under explicit approach.	Understand	The learner to recall the different techniques for implicit formulations and summarize the numerical methods.	CO 5
6	Build an expression of computational module for y momentum equation for an incompressible viscous flow for the pressure correction formula.	Understand	The learner to recollect the concepts of computational module, understand the momentum equation and develop the pressure correction formula.	CO 5
7	Illustrate the basic formulation for the two-dimensional finite volume method by using the area of an arbitrary plane quadrilateral.	Understand	The learner to recollect the classification of grids and able to explain in both physical and computational plane.	CO 5
8	Construct the numerical dissipation and numerical dispersion in the context of Numerical solution to fluid dynamical problems.	Understand	The learner to recall the concept of dissipation and dispersion in summarizing numerical methods in the CFD applications.	CO 5

9	Justify the checker-board behaviour of velocity and pressure fields in central Discretization schemes using sketches and explain how such behaviour can be avoided.	Understand	The learner to recall the different techniques for implicit formulations and summarize the numerical methods.	CO 5
10	Illustrate the pressure correction technique. List out the process for the philosophy of the pressure correction method.	Understand	The learner to recall the different techniques for implicit formulations and summarize the numerical methods.	CO 5
	PART-B LO	ONG ANSW	ER QUESTIONS	
1	Build an expression for second order accuracy in both space and time by using the Lax Wendroff method explicitly.	Apply	The learner to recall the different techniques for implicit formulations; summarize the methods by applying Numerical method.	CO 5
2	Build an expression for second order accuracy in both space and time by using the Maccormack method explicitly.	Apply	The learner to recall the different techniques for implicit formulations, summarize the methods and apply McCormack method	CO 5
3	What is a Crank Nicholson technique? Explain its advantages in field of CFD techniques.	Understand	_	CO 5
4	Obtain an expression for finite difference method, relaxation technique for the solution of elliptic partial differential equation. Explain its applications.	Apply	The learner to recollect the concepts of heat transfer understand the finite differences using Taylor series and formulate explicit equations.	CO 5
5	Illustrate the simple form of artificial viscosity by considering unsteady two dimensional flows.	Understand	The learner to recollect the concept of artificial viscosity concept and explain the flow characteristics.	CO 5

6	Build an expression of	Apply	The learner to recollect	CO 5
	computational module for x		the concepts of	
	momentum equation for an		computational module,	
	incompressible viscous flow		understand the	
	for the pressure correction		momentum equation and	
	formula.		develop the pressure	
			correction formula.	
7	List out the sequence of	Understand	_	CO 5
	operation in a			
	Computational fluid			
	dynamics procedure which			
	employs the SIMPLE			
	algorithm with the flow			
	chart.			
8	Explain the sequence of	Understand	The learner to recall the	CO 5
	operation in a		processes of CFD in fluid	
	Computational fluid		dynamics applications	
	dynamics procedure which		and Summarise the	
	employs the SIMPLEC		processes involved in it	
	algorithm with the flow		1	
	chart.			
9	Illustrate the first step in	Understand	The learner to recall the	CO 5
	the alternating direction		concept of heat transfer	
	implicit (ADI) technique by		and explain the step by	
	sweeping in the x direction		step procedure using ADI	
	to obtain T at time $t+\delta t/2$.		technique.	
10	What is the need for	Understand		CO 5
	staggered grid and sketch?			
	List out the advantages of			
	staggered grid.			
	PART-C SH	IORT ANSW	VER QUESTIONS	
1	Define point iterative	Understand		CO 5
	method.			
2	What extent does the	Understand		CO 5
	addition of artificial			
	viscosity effect the accuracy			
	of the problem?			
3	What is Relaxation	Understand		CO 5
	technique?			
4	Show the effect of numerical	Understand		CO 5
	dispersion when initial wave			
	at time $t=0$ and $t>0$			
5	Define approximate	Understand		CO 5

6	Write down the expression for relaxation factor.	Understand		CO 5	
7	What is Pressure correction technique?	Understand		CO 5	
8	Differentiate successive over relaxation and under relaxation.	Understand		CO 5	
9	What is the need for staggered grid?	Understand		CO 5	
10	Show the effect of numerical dissipation when initial wave at time $t=0$ and $t_i^2 0$.	Understand		CO 5	
		MODULI	EV		
FINITE VOLUME METHODS					
PA	RT A-PROBLEM SOLVIN	IG AND CR	ITICAL THINKING QU	ESTIONS)	
1	Differentiate cell-centered and cell-vertex discretization methodologies used in Finite volume approach with the help of sketches. What are the constraints to be satisfied on the choice of discretized control volumes for a consistent finite volume method?	Understand	The learner to recall the concept of discretization and explain step by step procedure in the determination of temperatures using finite volume method.	CO 6	
2	Identify the fluxes for the upwind schemes and cell-centered finite volumes methods, upwind schemes determine the cell face fluxes according to the propagation direction of the convection velocity.	Apply	The learner to recall the concept of discretization and explain the step by step procedure using finite volume method.	CO 6	
3	Distinguish the cell-centered approach and cell-vertex approach for the unstructured finite volume mesh with the help of neat sketch.	Understand	The learner to recall the concept of discretization and explain the step by step procedure using finite volume method.	CO 6	

4	Illustrate the cell-vertex finite volume method with the example of two-dimensional control surfaces by selecting hexagonal control volume and trapezoidal control surface.	Understand	The learner to recall the concept of discretization and explain the step by step procedure using finite volume method.	CO 6
5	Compare the interpretation of finite volume methods from the finite difference and finite element approaches.	Understand	The learner to recall the concept of finite difference and finite volume methods and compare its process in the application.	CO 6
6	Build the general formulation of a numerical scheme. The formulation is to be valid for all possible cases such as structured gird or unstructured grids either cell-centered or cell-vertex defines variables.	Understand	The learner to recall the concept of discretization and explain it for 2 D application while developing step by step procedure using finite volume method.	CO 6
7	Illustrate the basic formulation for the two-dimensional finite volume method by using the area of an arbitrary plane quadrilateral.	Understand	The learner to recall the concept of finite difference and finite volume methods and compare its process in the application.	CO 6
8	Build the finite volume estimation of gradients for an arbitrary quadrilateral by noticing differences δy grouped for opposite nodes with the suitable diagram.	Understand	The learner to recall the concept of discretization and explain it for 2 D application while developing step by step procedure using finite volume method.	CO 6
9	Construct the upwind scheme on Cartesian mesh by considering the discretization of the Two-dimensional linear convection equation and the fluxes are f=aU and g=bU.	Understand	The learner to recall the concept of finite difference and finite volume methods and compare its process in the application.	CO 6

10	Build the finite volume estimation of gradients by application of the Gauss divergence theorem for two dimensional control cells.	Understand	The learner to recall the concept of discretization and explain it for 2 D application while developing step by step procedure in the determination of temperatures using finite volume method.	CO 6			
PART-B LONG ANSWER QUESTIONS							
1	Illustrate the conservative discretization on a one-dimensional form of conservation law by subdivision of a one dimensional space into mesh cells with the flux vector in x-component.	Understand	The learner to recollect the concepts of discretization and explain significance in 1 D heat transfer equations.	CO 6			
2	What do you understand by conservative discretization and explain the importance of it in FVM.V	Understand	Understand-	CO 6			
3	Build the formal expression of a conservative discretization by stating the theorem for the discretized equation.	Apply	The learner to recall finite volumes method, explain it for conservative discretization and develop step by step procedure using finite volume method.	CO 6			
4	Explain the cell-centered approach for the structured finite volume mesh and unstructured finite volume mesh with the help of neat sketch.	Understand	The learner to recall the concepts of basic numerical methods, classification and Discuss the finite volume methods in CFD applications.	CO 11			
5	Illustrate the non-conservative discretization on a one-dimensional form of conservation law.	Understand	The learner to recall the concepts of basic numerical methods and its classification and explain the finite volume methods in CFD applications	CO 6			

6	Explain the fluxes for the upwind schemes and cell-vertex finite volumes methods, upwind schemes determine the cell face fluxes according to the propagation direction of the convection velocity.	Understand	The learner to recall finite volumes method and explain the upwind schemes.	CO 6			
7	Compare the non-uniform finite volume mesh and orthogonal non-uniform finite volume mesh with the suitable diagram.	Understand	The learner to recall discretization and compare the non-uniform finite volume mesh with orthogonal non-uniform finite volume mesh.	CO 6			
8	Construct the standard finite difference discretization on the mesh by considering the two-dimensional diffusion equation and Cartesian grid.	Apply	The learner to recall finite volumes method, explain the two-dimensional diffusion equation and develop the finite difference discretization on the mesh.	CO 6			
9	Explain the finite volume estimation of gradients by considering control cell and applying trapezoidal integration formulas.	Understand	The learner to recall finite volumes method and explain the finite volume estimation.	CO 6			
10	Compare the non-uniform finite volume mesh and orthogonal non-uniform finite volume mesh with the suitable diagram.	Understand	The learner to recall discretization and compare the non-uniform finite volume mesh with orthogonal non-uniform finite volume mesh.	CO 6			
PART-C SHORT ANSWER QUESTIONS							
1	Define Finite volume method and list the advantages and disadvantages	Understand		CO 6			
2	State control volume for the Finite volume method?	Understand		CO 6			
3	What is the basis of Finite Volume Method?	Understand	_	CO 6			
4	Discuss and sketch the incorrect finite volume decomposition.	Understand		CO 6			

5	Sketch the cell-centered and cell-vertex cells for structured grid.	Understand		CO 6
6	Sketch the cell-centered and cell-vertex cells for structured grid.s	Understand		CO 6
7	Define residual in finite volume method.	Understand	_	CO 6
8	Discuss the alternative formulation of the conservation condition.	Understand	_	CO 6
9	Write down the expression used for the estimation of the area of an arbitrary cell.	Understand	_	CO 6
10	Define one condition for finite volume selection.	Understand	_	CO 6

Course Coordinator: Mr.A Rathan Babu HOD AE