(REVISED COURSE)
GN-7676
(3 Hours)
[Total Marks : 100
N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.
(3). Assume suitable data if necessary with proper justification.

Q No 1. a. What are humanoid robots.
b. Define the following terms: Tool Path, Tool Trajectory, DOF, Precision, Accuracy.
c. Explain guarded and constrained motion,
d. Define Joint space work envelope, Dexterous work envelope.

Q No 2. a. Explain four fundamental operations for merging of frame K -1 with frame K . Also obtain General link Coordinate Transformation matrix $\mathrm{T}_{\mathrm{k}-1}^{\mathrm{K}}$
b. Consider an Adept 1 SCARA robot 4 axes having axes B, E, VE, TR. Write a note on its physical construction. Explain its kinematic configuration (LCD KPT using pass 1 and pass 2 of DH algorithm with neat sketch and obtain the arm matrix and verify it by substituting the last column of the KP table.

Q No 3. a. Initially M and F are two RHOCF which are coincident. After performing a a screw transformation along F^{3} axis of F by a distance of 5 units and rotating by an angle of 90° about F^{3} axis of F, Find $\left[M^{3}\right]^{\dagger}$ after screw transformation. Also, find pitch of the screw. Here $\left[\mathrm{M}^{3}\right]^{\mathrm{f}}$ is a unit vector with coordinates $[0,0,1,1]^{\top}$
B. Explain Robot Task Planner with the help of neat block diagram. Also classify various robotic motion planning techniques.
Q No 4. a. What are Template Matching Techniques of a Gray level image and their applications to robotic vision.
b. Explain Edge detection algorithm for finding the edges of an object in a
image.

Q No.5. a. Compare real time operating system with traditional ones.
b. Find the inverse kinematic solution of Four Axes Adept - 1 SCARA
robot

Q No 6. a. Explain Pick and place operation in Trajectory planning.
b. Carry out work space analysis of five axis articulated Rhino XR-3

Q No. 7.Write short notes on (any three):
a. Prespective Transformation
b. Object Tracking using Discrete Wavelet Transform
c. Linear interpolation with parabolic. blends.
d. Programming languages for Embedded Systems
e. Bounded deviation algorithm.

