Con. 4536-12.

GN-8624

5

5

8

6

(3 Hours)

[Total Marks: 100

- N.B. (1) Questions No. 1 is compulsory.
 - (2) Attempt any four questions from the remaining six questions.
- 1. a) Find the Z-transform and hence DFT of: $x(n) = \left(\frac{1}{4}\right)^n u(n+4)$
 - b) Find the magnitude and phase response of the system described by the difference equation:-

$$y(n) = x(n) + \frac{1}{3}x(n-1) + \frac{1}{6}x(n-2)$$

- c) Derive Parseval's Energy Theorem. Also state the significance of the same.
- d) Calculate the speed improvement factor in calculating 256 point DFT of a sequence using direct
 5 computation and using FFT algorithm.
- 2. a) Find Energy/Power of the following signals:-

i)
$$x(n) = \left(\frac{1}{3}\right)^n$$
 for $n \ge 0$ ii) $x(n) = 3\cos(4\pi n + \theta)$

$$=$$
 3" for n<0

b) Test the following systems for linearity and time invariance:-

i)
$$y(n) = a^{x(n)}$$
 ii) $y(n) = 2x(n) + \frac{1}{x(n-1)}$

- Determine the transfer function, impulse response and step response for the system given by: y(n) = y(n-1) + x(n) + x(n-1)
- 3. a) Determine the inverse ZT for $X(Z) = \frac{z}{3z^2 4z + 1}$ ROC |Z|>1
 - b) Obtain Cascade and Parallel realization of the second order DT linear system defined by: $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{3}x(n-1)$
- 4. a) Determine the circular convolution of the two sequences $x_1(n)$ and $x_2(n)$ if $x_1(n) = \delta(n) + \delta(n-1) \delta(n-2) \delta(n-3) \text{ and}$ $x_2(n) = \delta(n) \delta(n-2) + \delta(n-4)$

b) For the pole-zero plot of a system shown below:-

- i) Find the equation of magnitude response
- ii) Plot the magnitude response
- iii) Identify the type of system based on pass band.
- 5. a) Given $x(n) = 2^n$ and N=8, find X(K) using DIT-FFT algorithm.

10

10

10

10

10

10

- b) For $x(n)=\{1+5j, 2+6j, 3+7j, 4+8j\}$, find DFT X(K).
 - Using the result above and not otherwise, find DFT of following sequences:
 - i) $x1(n) = \{1, 2, 3, 4\}$ and ii) $x2(n) = \{5, 6, 7, 8\}$.
- 6. a) Explain the overlap-add and overlap-save method for filtering of long data sequences.
 - Draw the functional block diagram of TMS320C5X processor and explain various functional units.
- 7. a) Using DFT/IDFT, find circular convolution of $x1(n) = \{1, 1, 2, 2\}$ and $x2(n) = \{1, 2, 3, 4\}$
 - b) Classify the following systems as FIR/IIR, Min/Max/Mixed Phase and specify the pass band from the pole-zero plot shown:-

b)

