

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

UNIT I

ALGORITHMIC PROBLEM SOLVING

Algorithms, building blocks of algorithms (statements, state, control flow, functions),

notation (pseudo code, flow chart, programming language), algorithmic problem

solving, simple strategies for developing algorithms (iteration, recursion). Illustrative

problems: find minimum in a list, insert a card in a list of sorted cards, Guess an

integer number in a range, Towers of Hanoi.

1.PROBLEM SOLVING

Problem solving is the systematic approach to define the problem and creating
number of solutions.

The problem solving process starts with the problem specifications and ends with a
Correct program.

1.1 PROBLEM SOLVING TECHNIQUES

Problem solving technique is a set of techniques that helps in providing logic for solving
a problem.

Problem Solving Techniques/Program Design Tools:

Problem solving can be expressed in the form of

1. Algorithms.
2. Flowcharts.
3. Pseudo codes.

1.2.ALGORITHM

Algorithm is an ordered sequence of finite, well defined, unambiguous
instructions for completing a task. It is an English-like representation of the logic which
is used to solve the problem. It is a step- by-step procedure for solving a task or a
problem.

It is also defined as “any problem whose solution can be expressed in a list of
executable instruction”.

It is defined as a sequence of instructions that describe a method for solving a

problem. In other words it is a step by step procedure for solving a problem.

Example- Algorithm to display your name ,dept
1. Start
2. Get/Read the name and department
3. Print the name and department
4. Stop

Algorithm to find the area of the circle
1. Start
2. Read the value of radius r
3. Calculate - Area=3.14*r*r
4. Print the Area of the circle
5. Stop

Programs

Characteristics of algorithm
 Should be written in simple English
 Each and every instruction should be precise and unambiguous.

 Instructions in an algorithm should not be repeated infinitely.
 Algorithm should conclude after a finite number of steps.
 Should have an end point
 Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm

The following are the primary factors that are often used to judge the quality of the
algorithms.

Time – To execute a program, the computer system takes some amount of time. The
lesser is the time required, the better is the algorithm.

Memory – To execute a program, computer system takes some amount of memory
space. The lesser is the memory required, the better is the algorithm.

Accuracy – Multiple algorithms may provide suitable or correct solutions to a given
problem, some of these may provide more accurate results than others, and such
algorithms may be suitable.

Or

Qualities of a good algorithm

Time - Lesser time required.
Memory - Less memory required.
Accuracy - Suitable or correct solution obtained.
Sequence - Must be sequence and some instruction may be repeated in number of
times or until particular condition is met.
Generability - Used to solve single problem and more often algorithms are designed to
handle a range of input data.

2.BUILDING BLOCKS OF ALGORITHMS (statements, state, control flow, functions)
Algorithms can be constructed from basic building blocks namely, sequence,

selection and iteration.

2.1.Statements:

Statement is a single action in a computer.

In a computer statements might include some of the following actions

 input data-information given to the program
 process data-perform operation on a given input
 output data-processed result

2.2.State:

Transition from one process to another process under specified condition with in a
time is called state.

2.3.Control flow:

The process of executing the individual statements in a given order is called control
flow.

The control can be executed in three ways

1. sequence
2. selection
3. iteration

Sequence:

All the instructions are executed one after another is called sequence execution.

Example:

Add two numbers:

Step 1: Start

Step 2: get a,b

Step 3: calculate c=a+b

Step 4: Display c

Step 5: Stop

Selection:

A selection statement causes the program control to be transferred to a specific
part of the program based upon the condition.

If the conditional test is true, one part of the program will be executed, otherwise
it will execute the other part of the program.

Example

Write an algorithm to check whether he is eligible to vote?

Step 1: Start

Step 2: Get age

Step 3: if age >= 18 print “Eligible to vote”

Step 4: else print “Not eligible to vote”

Step 6: Stop

Iteration:

In some programs, certain set of statements are executed again and again based
upon conditional test. i.e. executed more than one time. This type of execution is called
looping or repetition or iteration.

Example

Write an algorithm to print all natural numbers up to n

Step 1: Start

Step 2: get n value.
Step 3: initialize i=1

Step 4: if (i<=n) go to step 5 else go to step 7

Step 5: Print i value and increment i value by 1

Step 6: go to step 4

Step 7: Stop

2.4.Functions:

 Function is a sub program which consists of block of code(set of instructions)
that performs a particular task.

 For complex problems, the problem is been divided into smaller and simpler
tasks during algorithm design.

Benefits of Using Functions

 Reduction in line of code

 code reuse

 Better readability

 Information hiding

 Easy to debug and test

 Improved maintainability

Example:

Algorithm for addition of two numbers using function

Main function()

Step 1: Start

Step 2: Call the function add()

Step 3: Stop

sub function add()

Step 1: Function start

Step 2: Get a, b Values

Step 3: add c=a+b

Step 4: Print c

Step 5: Return

3.NOTATIONS

3.1.FLOW CHART

Flow chart is defined as graphical or diagrammatic representation of the logic for
problem solving.

The purpose of flowchart is making the logic of the program clear in a visual
representation.

A flowchart is a picture of the separate steps of a process in sequential order.

Rules for drawing a flowchart

1. The flowchart should be clear, neat and easy to follow.
2. The flowchart must have a logical start and finish.
3. Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol. However, two or three flow
lines may leave the decision symbol.

5. Only one flow line is used with a terminal symbol.

6. Within standard symbols, write briefly and precisely.
7. Intersection of flow lines should be avoided.

Advantages/Benefits of flowchart:

1. Communication: - Flowcharts are better way of communicating the logic of a
system to all concerned.

2. Effective analysis: - With the help of flowchart, problem can be analyzed in more
effective way.

3. Proper documentation: - Program flowcharts serve as a good
program documentation, which is needed for various purposes.

4. Efficient Coding: - The flowcharts act as a guide or blueprint during
the systems analysis and program development phase.

5. Proper Debugging: - The flowchart helps in debugging process.
6. Efficient Program Maintenance: - The maintenance of operating

program

becomes easy with the help of flowchart. It helps the programmer to
put efforts more efficiently on that part.

Disadvantages/Limitation of using flowchart
1. Complex logic: - Sometimes, the program logic is quite complicated.

In that case, flowchart becomes complex and clumsy.
2. Alterations and Modifications: - If alterations are required the

flowchart may require re-drawing completely.
3. Reproduction: - As the flowchart symbols cannot be typed,

reproduction of flowchart becomes a problem.
4. Cost: For large application the time and cost of flowchart drawing

becomes costly.

GUIDELINES FOR DRAWING A FLOWCHART
Flowcharts are usually drawn using some standard symbols; however, some special symbols

can also be developed when required. Some standard symbols, which are frequently required for

flowcharting many computer programs.

 Terminator:

An oval flow chart shape indicates the start or end of the process, usually containing the

word “Start” or “End”.

Terminator

Process:
A rectangular flow chart shape indicates a normal/generic process flow step. For

example, “Add 1 to X”, “M = M*F” or similar.

Process

Decision:
A diamond flow chart shape indicates a branch in the process flow. This symbol is

used when a decision needs to be made, commonly a Yes/No question or True/False test.

 Decision

 No

 Yes

Connector:

A small, labelled, circular flow chart shape used to indicate a jump in the process flow.

Connectors are generally used in complex or multi-sheet diagrams.

Data:
A parallelogram that indicates data input or output (I/O) for a process. Examples: Get X

from the user, Display X.

Delay:

Used to indicate a delay or wait in the process for input from some other process.

Arrow:
Used to show the flow of control in a process. An arrow coming from one symbol and

ending at another symbol represents that control passes to the symbol the arrow points to.

Example Flowchart
Problem 1: Draw the flowchart to find the largest number between A and B

Problem 2: Find the area of a circle of radius r.

Problem 3: Convert temperature Fahrenheit to Celsius.

Problem 4: Flowchart for an algorithm which gets two numbers and prints sum of their value

.

Problem5: Flowchart for the problem of printing even numbers between 0 and 99.

3.2.PSEUDO CODE:

“Pseudo” means initiation or false.
“Code” means the set of statements or instructions written in a programming
language. Pseudocode is also called as “Program Design Language [PDL]”.

 Pseudo code consists of short, readable and formally styled English languages
used for explaining an algorithm.

 It does not include details like variable declaration, subroutines.

 It is easier to understand for the programmer or non programmer to understand
the general working of the program, because it is not based on any programming
language.

 It gives us the sketch of the program before actual coding.
 It is not a machine readable
 Pseudo code can’t be compiled and executed.
 There is no standard syntax for pseudo code.

Rules for writing Pseudocode

 Write one statement per line
 Capitalize initial keyword(READ, WRITE, IF, WHILE, UNTIL).

 Indent to hierarchy
 End multiline structure
 Keep statements language independent

Common keywords used in pseudocode
The following gives common keywords used in pseudocodes. 1.

//: This keyword used to represent a comment.
2. BEGIN,END: Begin is the first statement and end is the last statement.
3. INPUT, GET, READ: The keyword is used to inputting data.
4. COMPUTE, CALCULATE: used for calculation of the result of the given expression.
5. ADD, SUBTRACT, INITIALIZE used for addition, subtraction and initialization.

6. OUTPUT, PRINT, DISPLAY: It is used to display the output of the program.
7. IF, ELSE, ENDIF: used to make decision.
8. WHILE, ENDWHILE: used for iterative statements.
9. FOR, ENDFOR: Another iterative incremented/decremented tested automatically.

 Example:

Addition of two numbers:

BEGIN

GET a,b

ADD c=a+b

PRINT c
 END

 Syntax for if else: Example: Greates of two numbers

 IF (condition)THEN BEGIN

 statement READ a,b

 ... IF (a>b) THEN

 ELSE DISPLAY a is greater

 statement ELSE

 ... DISPLAY b is greater

 ENDIF END IF

 END

 Syntax for For: Example: Print n natural numbers

 FOR(start-value to end-value) DO BEGIN

 statement GET n

 ... INITIALIZE i=1

 ENDFOR FOR (i<=n) DO

 PRINT i

 i=i+1

 ENDFOR

 END

 Syntax for While: Example: Print n natural numbers

 WHILE (condition) DO BEGIN

 statement GET n

 ... INITIALIZE i=1

 ENDWHILE WHILE(i<=n) DO

 PRINT i

 i=i+1

 ENDWHILE

 END

 Advantages:

 Pseudo is independent of any language; it can be used by most programmers.
 It is easy to translate pseudo code into a programming language.
 It can be easily modified as compared to flowchart.

 Converting a pseudo code to programming language is very easy as compared

with converting a flowchart to programming language.

 It does not provide visual representation of the program’s logic.
 There are no accepted standards for writing pseudo codes.
 It cannot be compiled nor executed.
 For a beginner, It is more difficult to follow the logic or write pseudo code as

compared to flowchart.
Disadvantage

It is not visual.
We do not get a picture of the design.
There is no standardized style or format.

For a beginner, it is more difficult to follow the logic or write pseudocode as
compared to flowchart.

Algorithm Flowchart Pseudo code

An algorithm is a sequence It is a graphical It is a language

of instructions used to representation of algorithm representation of

solve a problem algorithm.

User needs knowledge to not need knowledge of Not need knowledge of

write algorithm. program to draw or program language to

 understand flowchart understand or write a

 pseudo code.

4.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem

 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to

handle.

 A correct algorithm is not one that works most of the time, but one that works

correctly for all legitimate inputs.

Ascertaining the Capabilities of the Computational Device

 If the instructions are executed one after another, it is called sequential
algorithm.

 If the instructions are executed concurrently, it is called parallel algorithm.

Choosing between Exact and Approximate Problem Solving

 The next principal decision is to choose between solving the problem exactly or
solving it approximately.

 Based on this, the algorithms are classified as exact algorithm and approximation

algorithm.

 Data structure plays a vital role in designing and analysis the algorithms.
 Some of the algorithm design techniques also depend on the structuring data

specifying a problem’s instance

 Algorithm+ Data structure=programs.

Algorithm Design Techniques

 An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety of
problems from different areas of computing.

 Learning these techniques is of utmost importance for the following reasons.
 First, they provide guidance for designing algorithms for new problems,
 Second, algorithms are the cornerstone of computer science

Methods of Specifying an Algorithm

 Pseudocode is a mixture of a natural language and programming language-like
constructs. Pseudocode is usually more precise than natural language, and its
usage often yields more succinct algorithm descriptions.

 In the earlier days of computing, the dominant vehicle for specifying algorithms
was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps.

 Programming language can be fed into an electronic computer directly. Instead,
it needs to be converted into a computer program written in a particular
computer language. We can look at such a program as yet another way of

specifying the algorithm, although it is preferable to consider it as the algorithm’s
implementation.

 Once an algorithm has been specified, you have to prove its correctness. That is,
you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time.

 A common technique for proving correctness is to use mathematical induction
because an algorithm’s iterations provide a natural sequence of steps needed for
such proofs.

 It might be worth mentioning that although tracing the algorithm’s performance
for a few specific inputs can be a very worthwhile activity, it cannot prove the
algorithm’s correctness conclusively. But in order to show that an algorithm is
incorrect, you need just one instance of its input for which the algorithm fails.

Analysing an Algorithm

1. Efficiency.
Time efficiency, indicating how fast the algorithm runs,
Space efficiency, indicating how much extra memory it uses.

2. simplicity.
 An algorithm should be precisely defined and investigated with mathematical

expressions.

 Simpler algorithms are easier to understand and easier to program.
 Simple algorithms usually contain fewer bugs.

Coding an Algorithm

 Most algorithms are destined to be ultimately implemented as computer
programs. Programming an algorithm presents both a peril and an opportunity.

 A working program provides an additional opportunity in allowing an empirical
analysis of the underlying algorithm. Such an analysis is based on timing the
program on several inputs and then analysing the results obtained.

5.SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS:

1. iterations
2. Recursions

5.1.Iterations:
A sequence of statements is executed until a specified condition is true is called
iterations.

1. for loop
2. While loop

 Syntax for For: Example: Print n natural numbers

 BEGIN

 FOR(start-value to end-value) DO GET n

 statement INITIALIZE i=1

... FOR (i<=n) DO

 ENDFOR PRINT i
 i=i+1

 ENDFOR

 END

 Syntax for While: Example: Print n natural numbers

 BEGIN

 WHILE (condition) DO GET n

 statement INITIALIZE i=1

... WHILE(i<=n) DO

 ENDWHILE PRINT i
 i=i+1

 ENDWHILE

 END

5.2.Recursions:

 A function that calls itself is known as recursion.
 Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.

Algorithm for factorial of n numbers using recursion:

Main function:

Step1: Start

Step2: Get n

Step3: call factorial(n)

Step4: print fact

Step5: Stop

Sub function factorial(n):

Step1: if(n==1) then fact=1 return fact

Step2: else fact=n*factorial(n-1) and return fact

Pseudo code for factorial using recursion:

Main function:

BEGIN

GET n

CALL factorial(n)

PRINT fact

BIN

Sub function factorial(n):

IF(n==1) THEN

fact=1

RETURN fact

ELSE

RETURN fact=n*factorial(n-1)

More examples:

Write an algorithm to find area of a rectangle

Step 1: Start BEGIN

Step 2: get l,b values READ l,b

Step 3: Calculate A=l*b CALCULATE A=l*b

Step 4: Display A DISPLAY A

Step 5: Stop END

Write an algorithm for Calculating area and circumference of circle

Step 1: Start BEGIN

Step 2: get r value READ r

Step 3: Calculate A=3.14*r*r CALCULATE A and C

Step 4: Calculate C=2.3.14*r A=3.14*r*r

Step 5: Display A,C C=2*3.14*r

Step 6: Stop DISPLAY A

 END

 Write an algorithm for Calculating simple interest

 Step 1: Start

 Step 2: get P, n, r value BEGIN

 Step3:Calculate READ P, n, r

 SI=(p*n*r)/100 CALCULATE S

 Step 4: Display S SI=(p*n*r)/100

 Step 5: Stop DISPLAY SI

 END

Write an algorithm for Calculating engineering cutoff

Step 1: Start

Step2: get P,C,M value BEGIN

Step3:calculate READ P,C,M

Cutoff= (P/4+C/4+M/2) CALCULATE

Step 4: Display Cutoff Cutoff= (P/4+C/4+M/2)

Step 5: Stop DISPLAY Cutoff

 END

To check greatest of two numbers

Step 1: Start

Step 2: get a,b value

Step 3: check if(a>b) print a is greater

Step 4: else b is greater

Step 5: Stop

BEGIN

READ a,b

IF (a>b) THEN

DISPLAY a is greater

ELSE

DISPLAY b is greater

END IF

END

To check leap year or not

Step 1: Start

Step 2: get y

Step 3: if(y%4==0) print leap year

Step 4: else print not leap year

Step 5: Stop

BEGIN

READ y

IF (y%4==0) THEN

DISPLAY leap year

ELSE

DISPLAY not leap year

END IF

END

To check positive or negative number

Step 1: Start

Step 2: get num

Step 3: check if(num>0) print a is positive

Step 4: else num is negative

Step 5: Stop

BEGIN

READ num

IF (num>0) THEN

DISPLAY num is positive

ELSE

DISPLAY num is negative

END IF

END

To check odd or even number

Step 1: Start

Step 2: get num

Step 3: check if(num%2==0) print num is even

Step 4: else num is odd

Step 5: Stop

BEGIN

READ num

IF (num%2==0) THEN

DISPLAY num is even

ELSE

DISPLAY num is odd

END IF

END

To check greatest of three numbers

Step1: Start

Step2: Get A, B, C

Step3: if(A>B) goto Step4 else goto step5

Step4: If(A>C) print A else print C

Step5: If(B>C) print B else print C

Step6: Stop

BEGIN

READ a, b, c

IF (a>b) THEN

IF(a>c) THEN

DISPLAY a is greater

ELSE

DISPLAY c is greater

END IF

ELSE

IF(b>c) THEN

DISPLAY b is greater

ELSE

DISPLAY c is greater

END IF

END IF

END

Write an algorithm to check whether given number is +ve, -ve or zero.
Step 1: Start

Step 2: Get n value.

Step 3: if (n ==0) print “Given number is Zero” Else goto step4

Step 4: if (n > 0) then Print “Given number is +ve”

Step 5: else Print “Given number is -ve”

Step 6: Stop

BEGIN

GET n

IF(n==0) THEN

DISPLAY “ n is zero”

ELSE

IF(n>0) THEN

DISPLAY “n is positive”

ELSE

DISPLAY “n is positive”

END IF

END IF

END

Write an algorithm to print all natural numbers up to n

Step 1: Start

Step 2: get n value.
Step 3: initialize i=1

Step 4: if (i<=n) go to step 5 else go to step 8

Step 5: Print i value

step 6 : increment i value by 1

Step 7: go to step 4

Step 8: Stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+1

ENDWHILE

END

Write an algorithm to print n odd numbers

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check if(i<=n) goto step 5 else goto step 8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+2

ENDWHILE

END

Write an algorithm to print n even numbers

Step 1: start

step 2: get n value

step 3: set initial value i=2

step 4: check if(i<=n) goto step 5 else goto step8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=2

WHILE(i<=n) DO

PRINT i

i=i+2

ENDWHILE

END

Write an algorithm to print squares of a number
Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i*i

i=i+2

ENDWHILE

END

Write an algorithm to print to print cubes of a number
Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i *i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i*i*i

i=i+2

ENDWHILE

END

Write an algorithm to find sum of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, sum=0

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate sum=sum+i

step 6: increment i value by 1

step 7: goto step 4

step 8: print sum value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,sum=0

WHILE(i<=n) DO

sum=sum+i

i=i+1

ENDWHILE

PRINT sum

END

 29

 Write an algorithm to find factorial of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, fact=1

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate fact=fact*i

step 6: increment i value by 1

step 7: goto step 4

step 8: print fact value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,fact=1

WHILE(i<=n) DO

fact=fact*i

i=i+1

ENDWHILE

PRINT fact

END

ILLUSTRATIVE PROBLEM
1.Guess an integer in a range

Algorithm:

Step1: Start
Step 2: Declare hidden, guess,range=1 to 100

Step 3: Compute hidden= Choose a random value in a range
Step 4: Read guess
Step 5: If guess=hidden, then Print

Guess is hit
Else

Print Guess not hit

Print hidden
Step 6: Stop
Pseudocode:
BEGIN

COMPUTE hidden=random value in a range

READ guess
IF guess=hidden, then PRINT

Guess is hit
ELSE

PRINT Guess not hit

PRINT hidden
END IF-ELSE

END
Flowchart:

2.Find minimum in a list

Algorithm: Step 1:

Start Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4

Step 5: Compute min=a[0]
Step 6: Initialize i=1
Step 7: If i<n, then go to step 8 else goto step 10
Step 8: If a[i]<min, then goto step 8.1,8.2 else goto 8.2

Step 8.1: min=a[i]
Step 8.2: i=i+1 goto 7

Step 9: Print min
Step 10: Stop

Pseudocode:
BEGIN

READ n
FOR i=0 to n, then READ

a[i] INCREMENT

i
END FOR COMPUTE

min=a[0] FOR i=1 to n,

then
IF a[i]<min, then CALCULATE

min=a[i] INCREMENT i
ELSE

INCREMENT i

END IF-ELSE

END FOR
PRINT min

END

Flowchart:

3.Insert a card in a list of sorted cards

Algorithm: Step 1:

Start Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4

Step 5: Read item
Step 6: Calculate i=n-1
Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else goto step 8

Step 7.1: a[i+1]=a[i]
Step 7.2: i=i-1 goto step 7

Step 8: Compute a[i+1]=item
Step 9: Compute n=n+1
Step 10: If i<n, then goto step 10.1, 10.2 else goto step 11

Step10.1: Print a[i]
Step10.2: i=i+1 goto step 10

Step 11: Stop

Pseudocode:
BEGIN

READ n
FOR i=0 to n, then READ

a[i] INCREMENT

i
END FOR

READ item
FOR i=n-1 to 0 and item<a[i], then

CALCULATE a[i+1]=a[i]

DECREMENT i
END FOR COMPUTE

a[i+1]=a[i] COMPUTE

n=n+1 FOR i=0 to n, then
PRINT a[i]

INCREMENT i
END FOR

END

Flowchart:

4. Tower of Hanoi
Algorithm:

Step 1: Start

Step 2: Read n

Step 3: Calculate move=pow(2,n)-1
Step 4: Function call T(n,Beg,Aux,End) recursively until n=0

Step 4.1: If n=0, then goto step 5 else goto step 4.2 Step

4.2: T(n-1,Beg,End,Aux)

T(1,Beg,Aux,End) , Move disk from source to destination

T(n-1,Aux,Beg,End)

Step 5: Stop
Pseudcode:
BEGIN

READ n

CALCULATE move=pow(2,n)-1
FUNCTION T(n,Beg,Aux,End) Recursively until n=0
PROCEDURE IF

n=0 then,
No disk to move

Else
T(n-1,Beg,End,Aux)
T(1,Beg,Aux,End), move disk from source to destination

T(n-1,Aux,Beg,End)
END PROCEDURE

END

Flowchart:

Procedure to solve Tower of Hanoi

The goal of the puzzle is to move all the disks from leftmost peg to rightmost peg.

1. Move only one disk at a time.

2. A larger disk may not be p1aced on top of a smaller disk.

For example, consider n=3 disks

