16E(A)

MATHEMATICS, Paper - II

(English version)

(Parts A and B)

Time: 2 hrs. 45 min.]

[Maximum Marks: 40

Instructions:

 15 minutes of time is allotted exclusively for reading the Question Paper and 2.30 hours for writing the answers.

1:0:

- 2. Part A answers should be written in separate answer book.
- 3. There are three sections in Part-A.
- Answer all questions.
- 5. Every answer should be written visibly and clearly.
- 6. There is internal choice in section III.

Part - A

Time: 2 Hours

Marks:30

SECTION - I

 $(Marks: 4 \times 1 = 4)$

Note:

- (i) Answer all the questions.
- (ii) Each question carries 1 mark.
- 1. If A(4,0), B(0, y) and AB = 5, find the possible values of y.
- 2. A boy observed the top of an electric pole at an angle of elevation of 30°, when the observation point is 10 meters away from the foot of the pole. Draw suitable diagram for the above situation.

- 3. Find the value of $\tan^2 45^\circ + \cot^2 30^\circ$.
- 4. If P(E) = 0.546, what is the probability of 'not E'?

SECTION - II

 $(Marks: 5\times 2=10)$

Note:

- (i) Answer all questions.
- (ii) Each question carries 2 marks.
- 5. Find the centroid of the triangle, whose vertices are (-4, 4), (-2, 2) and (6, -6).
- 6. $\triangle ABC \sim \triangle DEF$ and their areas are 64 cm² and 121 cm² respectively. If EF = 15.4 cm, then find BC.
- 7. Prove that $\tan^2 A \sin^2 A = \tan^2 A \cdot \sin^2 A$.
- 8. A die is thrown once. Find the probability of getting
 - (i) an even number
 - (ii) an odd prime number.
- Write less than cumulative frequency and greater than cumulative frequency table for the following data.

Class interval	5-10	10-15	15-20	20-25	25-30
Frequency	4	45	20	13	9

Note:

- (i) Answer all the questions.
- (ii) Choose any ONE from each question.
- (iii) Each question carries 4 marks.
- 10. (a) If $\csc \theta + \cot \theta = P$, show that $\frac{P^2 + 1}{P^2 1} = \sec \theta$.

OR

- (b) Show that the points (-4, -7), (-1, 2), (8, 5) and (5, -4) taken in order are the vertices of a Rhombus.
- 11. (a) Find the mode of the following data.

Class interval	50-52	53-55	herr ar 8 5-65 buil a	59-61	62-64
Frequency	15	110	135	115	25

OR

- (b) A chord of a Circle of radius 14 cm subtends 120° angle at the centre. Find the area of the corresponding major segment of the circle. ($\pi = 3.14$)
- 12. (a) A bag contains 20 discs, which are numbered from 1 to 20. If one disc is drawn at random from the bag, find the probability that it bears:
 - (i) an even number,
 - (ii) Prime number,
 - (iii) Multiple of 5,
 - (iv) Two digit odd number.

OR

(b) The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 30 m high, find the height of the building.

13. (a) Construct a triangle similar to the given $\triangle ABC$, with its sides equal to $\frac{3}{4}$ of the corresponding sides of the $\triangle ABC$.

OR

(b) Draw a Circle of radius 4 cm. From a point 7.5 cm away from its centre, construct the pair of tangents to the circle.

16E(B)

MATHEMATICS, Paper - II

(English version)

(Parts A and B)

Time: 2 hrs. 45 min.]

[Maximum Marks: 40

Instruction: Write the answers to the questions in this Part-B on the Question paper itself and attach it to the answer book of Part-A.

Part - B

Time: 30 minutes

Marks: 10

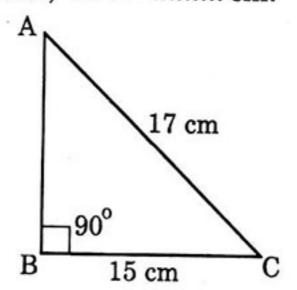
SECTION - IV

 $(Marks: 20 \times \frac{1}{2} = 10)$

Note:

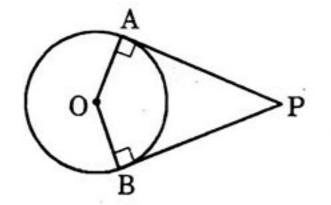
- (i) Answer all the questions.
- (ii) Each question carries $\frac{1}{2}$ mark.
- (iii) Marks will not be awarded in any case of over-written, rewritten or erased answers.
- (iv) Each question has four options. Write the CAPITAL LETTERS (A, B, C, D) showing the correct answer for the following questions in the brackets provided against them.
- 14. Slope of the line passing through the points (0, sin 60°) and (cos 30°, 0) is

[]


(A) 0

(B) 1

(C) -1


(D) $\sqrt{3}$

			17							
	*:				11.00					
	15.			$\angle A + \angle B$		then $\angle R = \dots$		1	[]
		(A) 55			(B)	65°	9			
		(C) 75	j°		(D)	45°				
	16	Theore								
	16.		ea of a sector,			n				,
		and the	angle is 120	, is sq.	cm.	1 1/4			L	J
		500 march 500 000 000	3		(B)	51.4				
		(C) 51	5		(D)	51.6				
	17.	If sec A	$-\tan\theta=3$, t	hen sec A 4	tan A -				r	1
		II Sec 0	- tan 0 - 0, t	ileii sec u 1	tan 0 –	1			L	1
		(A) 1			(B)	1 .				
				See 1 1 See 1		2	E Part I			
		(C) $\frac{1}{2}$			(D)	$\sqrt{2}$				
	7	3		10						
	18.	In the g	iven figure, I	3C =	units.		. *		[]
			A		(4)	_				
					(A)	$7\sqrt{3}$			15	
					(B)	$7\sqrt{2}$				
			7	/	(C)	7				•
				2	(D)	5				
			В	30°C	(D)	•				
		-				es surely	Feb. 1			
	19.		deck of cards							
		then th	e probability	of getting	a red Kir	ıg ıs			L	1
	27	$(A) \frac{1}{10}$	•		(B)	3				٠
		13			(2)	14				
	v	(C) $\frac{3}{2}$	_		(D)	1				
		26	;	1	(D)	26				
	20.	The me	an of first for	ır odd prim	e numbe	rsis			г	1
	_0.	(A) 6.8		n odd prin	(B)	7.5				,
		(C) 8.8			(D)	9.5				
			5		,					
	21.		tance of a poi	int (3, 4) fre		rigin is u	nits.]]
201		(A) 5			(B)	6				
		(C) 7			(D)	8				
	16E	(B)			[2]					

- (A) 5
- (B) 6
- (C) 7
- (D) 8

23. In the given figure, $\angle AOB = 120^{\circ}$, then $\angle APO =$

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 90°

24. A.M. of x-5, x, x+5 is

(A) $\frac{x}{2}$

(B) x

(C) 2x

(D) 5x

25. The area of given triangle is 60 sq. units, then $x = \dots$ units.

- (A) 6
- (B) 8
- (C) 10
- (D) 12

26. If $\sin 2\theta = \cos 3\theta$, then $\theta = \dots$

[

(A) 15°

(B) 18°

(C) 21°

(D) 24°

27. A boy observed 20 m away from the base of a 20 m high pole, the angle of elevation of the top is

[]

(A) 15°

(B) 30°

(C) 45°

(D) 60°

16E(B)

[3]

28. If P(E) = 1, then $P(\overline{E}) = \dots$

]

(A) 0

(B) 1

(C) $\frac{2}{3}$

- (D) $\frac{3}{2}$
- 29. If $\triangle ABC$, $DE \parallel BC$, AD = 2 cm, DE = 3 cm and AB = 6 cm, then BC = cm.
- []

(A) 3

(B) 6

(C) 9

- (D) 12
- 30. The length of the tangent drawn from a point 6 cm away from the centre of a circle with radius 3 cm is cm.
- ſ '

(A) 2√3

(B) $3\sqrt{3}$

(C) 3

- (D) 4
- 31. When a die is rolled, the probability of getting an odd prime number is
-]

(A) $\frac{1}{3}$

(B) $\frac{z}{3}$

(C) $\frac{1}{6}$

- (D) 3
- 32. If $\cos \theta = \frac{3}{5}$, then $\sin \theta = \dots$

[]

(A) $\frac{3}{4}$

(B) $\frac{4}{5}$

(C) $\frac{5}{12}$

- (D) $\frac{5}{13}$
- 33. Mode of 3, 4, 5 and x is 5, then x = ...

[]

(A) 3

(B) 5

(C) 4

(D) 8