	UNIVERSITY OF TECHNOLOGY
	000
	Utech
Name :	Å
Roll No. :	An Annual (Vitaminday Ind Exclosed
Invigilator's Signature :	

CS/BCA/SEM-2/BM-201/2012

2012 MATHEMATICS

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for any *ten* the following: $10 \times 1 = 10$
 - i) Integrating factor of the differential equation

$$x (1-x^{2}) dy + (2x^{2}y - y - ax^{3}) dx = 0 \text{ is}$$

a) $x/\sqrt{1-x^{2}}$ b) $x/\sqrt{x(x^{2}-1)}$
c) $x/\sqrt{x^{2}-1}$ d) $x^{2}/\sqrt{1-x^{2}}$.

ii) The order and degree of the differential equation

$$\sqrt{d^2y/dx^2} + dy/dx = y$$
 are

- a) 2, 1 b) 1, 2
- c) 2, 2 d) 2, 3.

2153

[Turn over

CS/BCA/SEM-2/BM-201/2012 $\frac{1}{(D-2)(D-3)}e^{2x}$ is iii) a) $-e^{2x}$ b) xe^{2x} c) $-xe^{2x}$ $-xe^{3x}$. d) If for a sequence $\{U_n\}$, $\lim_{h \to \infty} U_n = 0$, then iv) a) $\{U_n\}$ is converget b) $\{U_n\}$ is divergent c) $\{U_n\}$ is convergent to 0 d) none of these. The infinite series $\sum \frac{n}{n+1}$ is v) divergent a) b) convergent none of these. oscillatory d) c) The value of a for which { (1,2,3), (0,-1,9), (4,0,a) } is vi) linearly dependent is b) - 10 - 20 a) - 5 c) d) None of these. If the third order square matrix A is diagonalizable, then vii) the number of independent eigenvectors of A is b) a) two three none of these. c) one d)

			CS/BC	CA/SEM-2/BM-201/2012 Utech	
viii)	If S	and T be two subsp	aces of	f a vector space V , then	
	which of the following is also a subspace of V ?				
	a)	$S \cup T$	b)	S – T	
	c)	T – S	d)	$S \cap T.$	
ix)	The dimension of the subspace {($x, 0, y, 0$) $x, y \in R$ } is				
	a)	1	b)	2	
	c)	3	d)	4.	
x)	Let V and W be two vector spaces over R and $T: V \to W$				
	is a linear mapping. Then <i>Im T</i> is a sub-space of				
	a)	V	b)	W	
	c)	$V \cup W$	d)	$V \cap W$.	
xi)	The	infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$	conver	ges if	
	a)	$p \ge 1$	b)	<i>p</i> > 1	
	c)	$p \leq 1$	d)	none of these.	
xii)	The lower bound of the sequence $\{(-1)^{n-1}/n!\}$ is				
	a)	-1/2	b)	1/2	
	c)	0	d)	none of these.	
xiii)	Elin	ninating A and B fro	om y =	$A \cos x + B \sin y$, the	
	diffe	erential equation is		.2	
	a)	$\frac{d^2 y}{dx^2} = 0$	b)	$\frac{d^2 y}{dx^2} - y = 0$	
	c)	$\frac{d^2 y}{dx^2} + y = 0$	d)	$\frac{d^2 y}{dx^2} = 1.$	
3		3		[Turn over	

2153

[Turn over

CS/BCA/SEM-2/BM-201/2012

 $x \sin x$

a)

d) $-\frac{x}{2}\cos x$. c) x tan x

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Solve : $(px y) (py + x) = a^2 p$ 2. by using the substitution $x^2 = u$, $y^2 = v$ where $p = \frac{dy}{dx}$
- 3. Examine the convergence of the sequence $\left\{ \left(1+\frac{2}{n}\right)^n \right\}$
- 4. Examine the convergence of the series $\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$

Show that $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 = x_4 \}$ is 5. a subspace of R^4 .

6. Find the representative matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)

7. Find the basis of

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0, \ 2x + y + 3z = 0\}$$

$$CS/BCA/SEM-2 Product 2012$$

$$GROUP - C$$

$$(Long Answer Type Questions)$$
Answer any three of the following. $3 \times 15 = 45$
8. a) Solve: $\frac{d^2y}{dx^2} + \frac{1}{x} \frac{dy}{dx} = 12 \frac{\log x}{x^2}$
b) Obtain the general solution and singular solution of the equation $y = px + \sqrt{a^2 p^2 + b^2}$
c) Solve: $3\frac{dy}{dx} + \frac{2y}{x+1} = \frac{x^3}{y^2}$
5 + 6 + 4
9. a) State Leibnitz theorem for Alternating series and test the convergence of the series
 $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$
b) Test the convergence of the following series
 $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$
c) Show that the sequence $\left\{2 + \frac{(-1)^n}{n}\right\}$ is convergent.
$$6 + 5 + 4$$
10. a) Solve $\frac{d^2y}{2} + 4\frac{dy}{2} + 29 y = 0$

0. a) Solve
$$\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 29 \ y = 0$$

when $x = 0$, $y = 0$, $\frac{dy}{dx} = 15$

b) Show that the sequence
$$\sqrt{2}$$
, $\sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$, converges to 2.

c) Define basis and dimension of a vector space.

6 + 6 + 3

[Turn over

- 11. a) Prove that the vectors (x_1, y_1) and (x_2, y_2) are linearly dependent, if and only if $x_1y_2 x_2y_1 = 0$.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis of R^3 . Express (1, 0, 0) as a linear combination of α_1, α_2 and α_3 .
 - c) If α_1 , α_2 , α_3 form a basis of a vector space *V*, then prove that $\alpha_1 + \alpha_3$, $2\alpha_1 + 3\alpha_2 + 4\alpha_3$ and $\alpha_1 + 2\alpha_2 + 3\alpha_3$ also form a basis of the vector space *V*. 4 + 6 + 5

12. a) Let T be defined by
$$T(x, y) = (x', y')$$
 where
 $x' = x \cos \theta - y \sin \theta, y' = x \sin \theta + y \cos \theta$

Prove that T is a linear transformation.

- b) The linear transformation T : R³ → R³ transforms the basis vectors (1, 2, 1), (2, 1, 0) & (1, -1, -2) to the basis vectors (1, 0, 0), (0, 1, 0) & (0, 0, 1) respectively. Find T. Hence find T (3, -3, 3).
- c) Find the Kernel, Image, Nullity and Rank of $T: R^3 \rightarrow R^2$ where T (1, 0, 0) = (2, 1) T (0, 1, 0) = (0, 1) T (0, 0, 1) = (1, 1) 4 + 7 + 4

- CS/BCA/SEM-2/BM-201/2012
- 13. a) Prove that a subset S of a vector space V over R is a subspace if and only if $\alpha x + \beta y \in S$ for all $\alpha, \beta \in R$ and $x, y \in S$.
 - b) Show that the family M_2 of all real square matrices of order 2 forms a vector space over reals, and find a basis for M_2 .

c) Let
$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a + b = 0 \text{ and } a, b, c, d \in R \right\}$$

Prove that S is a subspace of M_2 . 5 + 6 + 4