Reg. No. : \qquad
Name : \qquad
IV Semester B.Tech. Degree (Reg./Sup./Imp.- Including Part Time)

Examination, May 2013

(2007 Admn. Onwards)

PT2K6/2K6EC/AEI 404 : SIGNALS AND SYSTEMS

Time : 3 Hours
Max. Marks : 100

Instruction : Answer all questions.

PART - A

Answer all questions.
I. a) What is the difference between a deterministic signal and a random signal?

Explain with an example.
b) Check whether the following system is linear or not? Prove it?

$$
y(n)=\frac{x(n-5)+x(n-7)}{x(n-2) x(n-3)}
$$

c) State and prove the frequency shifting property of CTFT.
d) Explain the ideal reconstruction of original signal from the samples.
e) Find the DTFT of $x(n)=\left(\frac{1}{3}\right)^{n} u(n)$.
f) Explain an inverse system.
g) State and prove the initial value theorem of Z-transform.
h) Prove any 2 properties of the Z-transform.

PART-B

II. a) Perform convolution of $x(n)$ and $h(n)$ where $x(n)=\{1, \stackrel{\downarrow}{2}, 3,4\}$ and $h(n)=\left\{\frac{2}{2}, 3,1,1\right\}$.
b) Find the output response of the system described by the differential eqn.

$$
\frac{d^{2} y(t)}{d t^{2}}+7 \frac{d y(t)}{d t}+12 y(t)=\frac{d x(t)}{d t}+x(t)
$$

where $x(t)=u(t)$, and the initial conditions are $y\left(0^{+}\right)=1 ; \frac{d y\left(0^{+}\right)}{d t}=1$.
c) The impulse response $h(t)=\left\{\begin{array}{cc}4(t) & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{array}\right\}$. The input signal $x(t)=e^{-a t} u(t)$. Find the o / p of the system $y(t)$ for
i) $t<0$,
ii) $0<t<T$,
iii) $t>T$.
d) Discuss any three classification of signals with an example.
III. a) Find the Fourier transform of

$$
\left.x(t)=\begin{array}{rl}
1 & 0 \leq t \leq 1 \tag{7}\\
-1 & -1 \leq t \leq 0 \\
0 & \text { otherwise }
\end{array}\right\}
$$

b) State and prove the convolution and multiplication property of CTFT.

OR

c) Using the property find out the Fourier transform of the signal

$$
\begin{equation*}
x(t)=\frac{d}{d t}\left\{\left[e^{-2 t} u(t)\right] *\left[e^{-31} u(t-3)\right]\right\} . \tag{9}
\end{equation*}
$$

d) Prove the Parseval's theorem for CTFS.
IV. a) Determine $h_{2}(n)$ for the given system.

15

> OR
b) Find the DTFT of signal

$$
\begin{align*}
x(n)= & \left(\frac{1}{2}\right)^{n} \quad n \geq 0 \\
& \left(\frac{1}{3}\right)^{n} \quad n<0 . \tag{7}
\end{align*}
$$

c) Determine the step response of a continuous time LTI system described by the differential equation using Laplace transform

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=x(t) . \tag{8}
\end{equation*}
$$

V. a) Using the property find out the Z-transform of the signal for $|\mathrm{a}|<1$ and also the ROC $x(n)=n a^{n} u(n)$.
b) What is ROC of Z-transform ? Explain.

OR

c) Determine the poles and zeros for the given differential equation. Also find out ROC

$$
\begin{equation*}
y(n)-\frac{5}{6} y(n-1)+\frac{1}{6} y(n-2)=x(n)-x(n-1) . \tag{8}
\end{equation*}
$$

d) Find out the Z-transform of the signal

$$
\begin{equation*}
x(n)=\left(\frac{1}{5}\right)^{n} u(n)+\left(\frac{1}{8}\right)^{n} u(n) . \tag{7}
\end{equation*}
$$

