97664

B.C.A. 1st Semester (New) Examination-November, 2014

LOGICAL ORGANISATION OF COMPUTER-I

Paper: BCA-104

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

- Note: Question No. 1 is compulsory. Attempt four questions by selecting one question from each Unit. All questions carry equal marks.
- 1. (a) What is Unicode? State its relevance.

 8×2=16
 - (b) What is the smallest and largest integer number represented in a 32-bit computer?
 - (c) What are Boolean theorems?
 - (d) Prove x.y' + y.z' + z.x' = x'.y + y'.z + z'.x, algebraically.

97664-6050-(P-4)(Q-9)(14) (1)

[Turn Over

- (c) What are digital signals? Explain.
- (f) What are code coverters?
- (g) What are encoders?
- (h) What are demultiplexers? State their importance.

UNIT - I

- 2. (a) What is a number system? Which number system is followed in digital computers and why?
 - (b) Find out the values of X,Y and Z in the following: $(97.750)_{10} = (X)_2 = (Y)_8 = (Z)_{16}$
- 3. Explain the following:
 - (a) Error detection and correction codes

8

(b) Character Codes

UNIT - II

- 4. (a) What is De Morgan's theorem? How is it useful? Illustrate its use with suitable examples.
 - (b) Simplify the following Boolean expression using K-map:

*	F =	D'.C'.B'.A', + D'.C'.B'.A' + D.C.B.A' D. C'.B'.A' + D.C'.B.A'	+
		and realize the same using NAND gates	10
5.	Exp	plain the following:	
	(a)	Venn diagrams	5
	(b)	Boolean Algebra	6
	(c)	Standard forms of Boolean Functions	5
		unit – III	E.
6.	(a)	What are Universal Gates? Why the are named so? Justify.	ese 6
23	(b)	What do you mean by multilevel NA and NOR circuits? Illustrate.	ND 5
*	(c)	What are AND-OR-INVERT and OR-AN INVERT implementation? Explain.	ID- 5
7.	(a)	What is combinational circuit? What its characteristics? Detail out procedure for design of combinatio circuit.	tne

(b)	Design	a combinationa		ional	l circuit		that	
151 151 151 151 151 151 151 151 151 151	receives	2-1	bit	binary	input	and	proc	luces
	its cube	at	the	output	•			. 8

UNIT - IV

- 8. (a) What is a multiplexer? How does it work? What are its applications? Explain.
 - (b) What is a full-adder? Design a full-adder and implement the same using gates. 8
- 9. Explain the following:
 - (a) BCD to seven-segment Decoder 8
 - (b) Comparators 8