(Pages: 2)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION MAY 2012

EE 09 403/PTEE 09 402—SIGNALS AND SYSTEMS

Time: Three Hours

Maximum: 70 Marks

Part A

All questions are compulsory:

- 1. Define energy and power signals.
- 2. State Parseval's Theorem for CT Fourier Series
- 3. What is nyquist rate?
- 4. Find the Fourier Transform $e^{at} u(t)$
- 5. Determine the inverse z transform X(z) = 1/z-a

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions:

- 1. Sketch the following signals
 - (i) r(t) u(2-t).

(2.5 marks)

(ii) r(t) - 2r(t-1) + r(t-2).

(2.5 marks)

- 2. Determine y(t) by convolution integral if $x(t) = e^{at} u(t)$ and h(t) = u(t).
- 3. Determine the continuous time signal of the following transforms:

$$X (jw) = \cos (4w + \prod /3)$$

4. Find the Z transform of the following sequence:

$$x[n] = u[n-2] -5u[n + 3]-u[n].$$

5. Determine the pole zero plot and ROC of the given equation:

$$X[n] = -a^n u[n-1]$$

6. Verify the causality and time invariance of the system y(n+2) = ax(n+1) + bx(n+3).

 $(4 \times 5 = 20 \text{ marks})$

Turn over

Part C

1 (a) Check whether the given system is stable or dynamic, linear or non-linear, causal or non-casual, time-invarient or time -varient

$$d^3y\ (t)/\ dt^3 +\ 4d^2\ y\ (t)/dt^2 +\ 5dy\ (t)/dt\ +2y(t) = x(t).$$

Or

- (b) Explain the Classification of signals with examples.
- 2 (a) A system is described by the differential equation,

$$d^2y(t)/dt^2 + 3dy(t)/dt + 2y(t) = dx(t)/dt$$

if
$$y(0) = 2$$
; $dy(0)/dt = 1$ and $x(t) = e^{-t} u(t)$

Determine the response of the system to a unit step input applied at t=0.

Or

- (b) Define exponential Series and derive the Fourier coefficients with example.
- 3 (a) Find the DTFT of:

(i) $x[n] = 2n \ u[n]$

(4 marks)

(ii)
$$x[n] = (0.5) n + 2 - n u[-n-1]$$

(6 marks)

Or

- (b) State and Prove Sampling Theorem
- 4 (a) Determine the inverse z transform of the following function:

(i)
$$x(z) = 1/(1 + z^{-1}) (1-z^{-1}) 2 \text{ ROC}: |Z > 1|$$

(7 marks)

(ii)
$$X(z) = 1/z-a, |z| > |a|$$

(3 marks)

Or

(b) Consider an LTI system for which the input x[n] and output y[n] satisfy the linear constant difference equation:

Y[n]-1/2 y[n-1] = x[n] + 1/3 x[n-1].

Find H(z) with ROC |Z>1/2|.

 $(4 \times 10 = 40 \text{ marks})$