

	We start
Reg. No. :	(SE 36.2)
Name :	10000

Third Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time) Examination, November 2015 (2006 and Earlier Admn.) EC/PTEC 2K 303: SOLID STATE DEVICES

Time: 3 Hours

Max. Marks: 100

- Instruction: 1) Answer all questions.
 - Missing data may be assumed suitably.
- I. a) Find the resistivity of intrinsic Si at 300°K given $\mu_n = 1350$ cm²/v sec and $\mu_n = 480$ cm²/v–sec. Given $n_i = 1.5 \times 10^{10}$ cm⁻³.
 - b) Explain quasi fermi level.
 - c) Qualitatively describe the current flow at the pn junction.
 - d) Explain the operation of a zener diode.
 - e) Explain the terms emitter injection efficiency and base transport factor for a transistor.
 - f) Explain avalanche breakdown in transistor.
 - g) Explain velocity saturation in short channel MOSFET.
 - h) What is channel length modulation? Write drain current equation for a short channel device. (5x8=40)
- II. A) 1) Derive continuity and diffusion equation for electron and holes.

8

2) Explain indirect recombination process.

7

OR

- B) 1) With necessary diagrams explain direct and indirect bandgap semiconductors.
 - 2) Explain the formation of n-type and p-type semiconductors.

7

8

M 27921

III. A) 1) With necessary diagrams, derive the expression for junction capacitance.	10
	5
2) Write a short note on varactor diode.	
OR	
B) 1) With energy bond diagram explain the operation of a tunnel diode.	10
	5
2) Write a short note on rectifying contours.	
V. A) Obtain the Eber's-Moll model for a transistor.	15
OR	
	7
B) 1) With necessary diagrams, explain Kirk effect.	
With neat diagram, explain transistor switching action.	8
V. A) With neat diagram explain the construction, working and V-I characteristics of JFET. OR	15
 B) 1) With neat diagrams explain the transfer characteristics of a n-channel MOSFET. 	7
2) Explain the construction and working of a floating gate MOSFET.	8