B.Tech. DEGREE EXAMINATION, MAY - 2015
 (Examination at the end of Third Year)
 MECHANICAL ENGINEERING
 Paper - IV : Hydraulic Machines

Time : 3 Hours
Maximum Marks : 75

$$
\begin{gathered}
\text { Answer question No. } 1 \text { compulsory } \\
\text { Answer ONE question from each unit }
\end{gathered}
$$

1) a) Find the force exerted by a jet of water of diameter 75 mm on a stationary flat plate, when the jet strikes the plate normally with velocity of $20 \mathrm{~m} / \mathrm{s}$.
b) Define the terms : Hydraulic Machines, Turbines \& Pumps.
c) Define the terms : Suction head, delivery head \& static head.
d) Define slip, percentage slip \& negative slip of a reciprocating pump.
e) What is meant by geometric, kinematic \& dynamic similarities?

UNIT - I

a) Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet.
b) A jet of water of diameter 50 mm having a velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a curved vane which is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet leaves the vane at an angle of 60° to the direction of motion of vane at outlet. Determine.
i) The force exerted by the jet on the vane in the direction of motion.
ii) Work done per second by the jet.

OR
3) A jet of water of diameter 100 mm strikes a curved plate at its centre with a velocity of $15 \mathrm{~m} / \mathrm{s}$. The curved plate is moving with a velocity of $7 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 150°. Assuming the plate smooth find :
a) Force exerted on the plate in the direction of the jet.
b) Power of the jet \& c) Efficiency.

UNIT - II

4) A Peltan wheel is revolving at a speed of 200 r.p.m. and develops 5886 kW S.P. when working under a head of 200 m with an overall efficiency of 80%. Determine unit speed, unit discharge \& unit power. The speed ratio for the turbine is given as 0.48 . Find the speed, discharge $\&$ power when this turbine is working under a head of 150 m .

OR
5) A Francis turbine with an overall efficiency of 70% is required to produce 147.15 kW . It is working under a head of 8 m . The peripheral velocity $=0.30 \sqrt{2 g H}$ and the radial velocity of flow at inlet is $0.96 \sqrt{2 g H}$. The wheel runs at 200 r.p.m. and the hydraulic losses in the turbine are 20% of the available energy. Assume radial discharge, determine

$$
(3+4+4+4=15)
$$

i) The guide blade angle.
ii) The wheel vane angle at inlet.
iii) Diameter of the wheel at inlet, \&
iv) Width of wheel at inlet.

UNIT - III

6) A single - acting reciprocating pump has a plunger of 10 cm diameter and a stroke of length 200 mm . The centre of the pump is 4 m above the water level in the sump \& 14 m below the level of water in a tank to which water is delivered by the pump. The diameter and length of suction pipe are 40 mm and 6 m while of the delivery pipe are $30 \mathrm{~mm} \& 18 \mathrm{~m}$ respectively. Determine the maximum speed at which the pump may be run without separation. If separation occurs at 7.848 $\mathrm{N} / \mathrm{cm}^{2}$ below the atmospheric pressure. Take atmospheric pressure head is 10.3 m of water.

$$
(71 / 2+71 / 2=15)
$$

OR
7) a) With the help of a neat sketch explain the various component parts of a centrifugal pump. (10)
b) How will you obtain an expression for the minimum speed for starting a centrifugal pump?

UNIT - IV

8) Derive on the basis of dimensional analysis suitable parameter to represent the thrust developed by a probelles. Assume that the thrust P depends upon the angular velocity ' ω ' speed of advance ' V ' diameter 'D' dynamic viscosity ' μ ' mass density δ and elasticity of the fluid medium which can be denoted by the speed of the sound in the medium C .

OR
9) Assuming that the viscous force F exerted by a fluid on a sphere of diameter D depends on the viscosity μ, mass density of fluid $\mathrm{P}, \&$ the velocity of sphere ' V ' obtain an expression for the viscous force.

