Name:	\&/
Roll No.:	
Inviailator's Sianature :	

2013

FORMAL LANGUAGE AND AUTOMATA THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) Which is true of the following?
 - a) Merger graph is directed graph
 - b) Compatible graph is directed graph
 - c) Both are directed
 - d) None of these.
- ii) The logic of pumping lemma is a good example of
 - a) The pigeon-hole principle
 - b) The divide and conquer technique
 - c) Recursion
 - d) Iteration.

4302 [Turn over

- iii) a*(a + b)* is equivalent to
 - a) $a^* + b^*$

b) a*b*

c) (ab)*

- d) none of these.
- iv) The class of context free language is not closed under
 - a) Concatenation
 - b) Union
 - c) Intersection
 - d) Repeated Concatenation.
- v) Which of the following strings can be obtained by the language L = $\{a^i b^{2i} | i \ge 1\}$
 - a) aaabbbbbb
- b) aabbb
- c) abbabbba
- d) aaaabbbabb.
- vi) Which string is not accepted by the following FSA?

a) 00111

b) 00110

c) 01010

d) 11010.

- vii) Which of the following production is in CNF
 - a) $S \rightarrow aA$
- b) $SA \rightarrow AS$
- c) $S \rightarrow AB$
- d) All of these.
- viii) The solution to the equation R = Q + RP is
 - a) $R = QP^*$
- b) R = Q*P
- c) $P = RQ^*$
- d) R = P.
- ix) A shift register is
 - a) Mealy M/C
 - b) Turing M/C
 - c) Moore M/C
 - d) all of these.
- x) Consider the following language:

$$L = \{a^n b^n c^n d^n \mid n \ge 1\}$$

L is

- a) CFL but not regular
- b) CSL but not CFL
- c) Regular
- d) Type 0 language but not type 1.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Design a Finite automate the accepts set of strings that every string ends with 00 over alphabet {0, 1}.
- 3. Let $\Sigma = \{a,b\}$, Prove that the Language L = $\{w \in \Sigma^* : n_a (w) \}$ is not regular.
- 4. Find the Context Free Grammar for the following language $L = \{ a^n b^{2n} c^m : n,m > 0 \}.$
- 5. Construct the regular expression corresponding to the state diagram given below :

6. Design a Turing Machine that recognizes the language of all string of even length over the alphabet {a,b}.

4302 4

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Construct a DFA from the NFA given below:

State/Σ	I/P	
	0	1
\rightarrow Q ₀	Q_0, Q_3	Q_0, Q_4
Q_3	Q_{f}	
Q_4		Q_{f}
Q _r (Final State)	Q_{f}	Q_{f}

- b) Construct λ NFA for the regular expression $(0+1)^*$ 1 (0+1) 4
- c) What is regular expression?

d) What will be regular expression over the alphabet $\{a,b\}$, for the language $L = \{a^nb^n : n > 4, m < 3\}$?

- 8. a) Design a TM that accepts $\{0n1^n | n \ge 1\}$
 - b) What do you mean by halting problem of a Turing machine?
 - c) Design a TM which can multiply two positive integers. 6
 - d) Why a Turing machine is called linear bounded automation?
- 9. a) State Myhill-Nerode theorem with the definition of equivalent relation and invariance. 3 + 2

6

2

b) Minimize the following machine by applying Myhill-Nerode theorem.

PS	NS	
	X = a	X = b
\rightarrow A	В	E
В	С	D
	Н	I
	I	Н
E	F	G
Œ	Н	I
G	Н	I
Н	Н	Н
I	I	I

10. a) Construct CFG for the following.

3 + 2 + 3

i) Palindrome for binary numbers.

ii)
$$L = \{ a^n b^n c^m d^m \mid m, n > 0 \}$$

iii)
$$L = \{ a^n b^m \mid n \neq m \}$$

b) Convert the following grammar to CNF.

5

$$S \rightarrow aA/B/C/a$$

$$A \rightarrow aB/E$$

$$B \rightarrow aA$$

$$C \rightarrow cCD$$

$$D \rightarrow abd$$

c) Define non-generating and non-reachable symbols with example.

4302

- 11. a) Construct a PDA to accept $L = \{ WW^R | W \text{ belongs to} (a,b)^* \text{ and } W^R \text{ is reverse string of } W \}$ by empty stack and final state.
 - b) Construct an equivalent PDA for the following CFG.

 $S \rightarrow aAB/bBA$

 $A \rightarrow bS/a$

 $B \rightarrow aS/b$

Show an ID for the string abbaaabbbab for the PDA generated with stack description.

c) Explain Ogden's Lemma for CFL. 3
