Code No. : 5430/N ## FACULTY OF ENGINEERING B.E. 2/4 (ECE) II Semester (New) (Main) Examination, May/June 2012 ANALOG ELECTRONIC CIRCUITS Time: 3 Hours] who are sometimed by replace to the strong grave died song, and the [Max. Marks : 75 Note: Answer all questions from Part A | Voltage gain of a single stage amplifier is 20. Bandwidth = 10 kHz are cascaded. Find overall voltage gain and bandwidth. Draw equivalent circuit of FET at high frequency and explain it. Input and output impedance of an amplifier are 1KΩ and 5KΩ Gain = 100. Feedback ratio = 0.04. Calculate input and output impervoltage shunt feedback amplifier. Draw equivalent circuit of transconductance amplifier and mention for R_i and R_o? Compare series and shunt regulators. | (25 Marks) 3 such stages | |--|---------------------------| | are cascaded. Find overall voltage gain and bandwidth. Draw equivalent circuit of FET at high frequency and explain it. Input and output impedance of an amplifier are 1KΩ and 5KΩ Gain = 100. Feedback ratio = 0.04. Calculate input and output impevoltage shunt feedback amplifier. Draw equivalent circuit of transconductance amplifier and mention for R_i and R_o? | 3 such stages | | 3. Input and output impedance of an amplifier are 1KΩ and 5KΩ Gain = 100. Feedback ratio = 0.04. Calculate input and output impe voltage shunt feedback amplifier. 4. Draw equivalent circuit of transconductance amplifier and mentior for R_i and R_o? | • | | Gain = 100. Feedback ratio = 0.04. Calculate input and output impe voltage shunt feedback amplifier. 4. Draw equivalent circuit of transconductance amplifier and mentior for R_i and R_o? | 2 | | for R _i and R _o ? | respectively. edance of a | | | ideal values
3 | | 6. Find the oscillation frequency of a colpitts oscillator with circuit valve C₁ = 0.16 μ F, C₂ = 0.33 μ F. 7. Classify amplifiers based on the position of Q-point. | es L = 15.8 mH,
2 | | 8. Differentiate power amplifier and voltage amplifier. | 3 | | 9. List the advantages of tuned circuit. | 2 | | What is meant by neutralization? Draw two circuits to achieve neu
explain. | | 1 ## PART-B | 999h w | | |--------|---| | See B | 3 | | | 3 | - 11. a) Show the hybrid $-\pi$ equivalent circuit of BJT at high frequency in CE. configuration. Explain significance of each parameter. Derive the expression for f_R and f_T interms of hybrid $-\pi$. 8 b) BJT has the following parameters $f_T = 500$ MHz at collector current = 1 mA. β =10. Calculate bandwidth. 2 12. Draw current series feedback amplifier and analyse the circuit to calculate A_{lf} , A_{vf} , R_{if} and R_{ef} if $R_c = 1K\Omega$, $R_e = 100\Omega$, $C_e = 10\mu$ F, $R_s = 100\Omega$, $R_1 = 30K\Omega$, $R_2'' = 20K''_{\Omega}$, $h_{fe} = 50 \, \check{h}_{ie} = 1.1K''_{\Omega}$ and $h_{oe} = \check{h}_{re} = 0$. 10 13. a) Draw the circuit of Hartley Oscillator and explain its operation. Derive the expression for its frequency of operation and initiating oscillations. 8 b) Why RC oscillators are not suitable at high frequency? 2 14. a) Discuss complementary symmetry puss pull class B amplifier and derive the expression for power dissipation. 7 b) A complementary symmetry providing 22V peak signal to 8Ω load and power supply Vcc = 25V. Find: a) input power b) output power c) circuit efficiency. 3 15. a) What is meant by Synchronous tuning? Derive the expression for gain and bandwidth. 5 b) What is stagger tuning? Draw its frequency response. Derive the expression for selectivity. 5 - 16. a) When a number of identical Rc coupled amplifiers are connected in cascade derive the expressions for its overall voltage gain, current gain and lower and upper 3dB frequencies? - b) Prove that -ve feedback reduces gain and increases bandwidth. - 17. a) Draw transformer coupled class A power amplifier and explain its working. Derive its maximum efficiency. - b) Design a series voltage regulator to provide an o/p of 30V and supply a load 1A. The input varies from 40 to 50 volts. 5 5 5