48: 1st half.12-AM(w)

Con. 3613-12.

(REVISED COURSE)

15/05/2012

GN-7427

10

(4 Hours)

[Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six.
 - (3) Assume suitable data if required.
 - (4) Figures to the right indicate full marks.
- 1. Attempt any four of the following: -

	L	or any real or the following r	
(a)	Briefly explain application of FEM in various fields.	5
(b)	Explain Principle of minimum Potential Energy.	5
((c)	Explain different sources of error in a typical F.E.M. Solution.	5
((d)	Briefly explain Node Numbering Scheme.	5
((e)	Explain properties of Global Matrix.	5

2. (a) Solve the following differential equation using Galerkin's method

$$3\frac{d^2u}{dx^2} - 3u + 4x^2 = 0$$
 with boundry conditions $u(0) = u(1) = 0$. Assume Cubic

Polynomial for approximate solution.

(b) Solve the following differential equation using Rayleigh - Ritz method $3\frac{d^2y}{dx^2} - \frac{dy}{dx} + 8 = 0, 0 < x < 1 \text{ with boundry conditions } y(0) = 1 \text{ and } y(1) = 2. \text{ Assume}$

Cubic Polynomial for trial solution. Find the value at y(0.3) and y(0.8)

(a) Evaluate the following integral using Gauss Quadrature. Compare your answer 12 with exact

$$I = \int_{-1}^{1} \int_{-1}^{1} (r^3 - 1) (s - 1)^2 dr ds$$

ξ	w			
0.0	2			
± 0.5774	1			
+ 0.0	0.8889			
± 0.7746	0.5556			
	± 0.5774 + 0.0			

(b) Explain the following :-

. 8

- (i) Convergence requirements
- (ii) Global, Local and Natural co-ordinate system.
- 4. (a) For the two bar truss shown in figure, determine the nodal displacement; stresses 15

in each element and reaction at support. Take $E = 2 \times 10^5 \frac{N}{mm^2}$, $A = 200 \text{ mm}^2$

[TURN OVER

- (b) Explain Band Width.
- 5. (a) Using Direct Stiffness method, determine the nodal displacements of stepped bar 12 shown in figure.

Take
$$E_1 = 200 \text{ GPa}$$
 $A_1 = 150 \text{ mm}^2$ $F_1 = 10 \text{ kN}$
 $E_2 = 70 \text{ GPa}$ $A_2 = 100 \text{ mm}^2$ $F_2 = 5 \text{ kN}$

- (b) Derive the shape function for a Quadratic bar element [3 noded 1 dimensional bar] using Lagrangian Polynomial in (i) Global co-ordinates and (ii) Natural co-ordinates.
- (a) Find the shape function for two dimensional Nine noded rectangular elements 12 mapped into natural coordinates.
 - (b) The nodal co-ordinates of a triangular element are as shown in figure. The x 8 co-ordinate of interior point P is 3·3 and shape function $N_1 = 0·3$. Determine N_2 , N_3 and y co-ordinate of point P.

7. (a) Find the natural frequency of axial Vibrations of a bar of uniform cross section 10

of 20 mm² and length 1 m. Take E =
$$2 \times 10^5 \frac{N}{mm^2}$$
 and $\rho = 8000 \frac{kg}{m^3}$.

Take 2 linear elements

(b) Discuss briefly higher order and isoparametric elements with suitable sketches. 10