

Code No.: 5147/M

FACULTY OF ENGINEERING B.E. 3/4 (ECE) II Semester (Main) Examination, May/June 2012 DIGITAL SIGNAL PROCESSING

Time: 3 Hours] [Max. Marks: 75

> Note: Answer all questions from Part A, Answer any five questions from Part R

	from Part B .	
	PART-A	(25 Marks)
1.	Differentiate between energy signal and power signal.	3
2.	Determine Inverse DTFT of $\times \left(e^{j\omega} \right) = \delta(\omega), -\pi < \omega < \pi$.	2
3.	Explain any two properties of DFT.	3
4.	What does one mean by In-place computation?	2
5.	Give the mathematical expressions for Hamming and Bartlett Windows.	2
6.	Discuss advantages and disadvantages of FIR over IIR filter.	3
7.	Explain Warping effect and discuss how can it be eliminated.	3
8.	Compare Direct form-I and Direct form-II realisation structures.	2
9.	Explain circular addressing mode for a DSP processor.	3
10.	What purpose does MAC unit serve for DSP applications?	2
	PART-B	(50 Marks)
11.	Find the system response described by the following difference equation	
	$y(n) - \frac{7}{12}y(n-1) + \frac{1}{12}y(n-2) = 2$ for $n \ge 0$. The initial conditions are $y(-1) = 2$	1) = 2
	and $y(-2) = 3$.	10
12.	Determine the output of a linear FIR filter whose impulse response is $h(n) = 1$ and the input signal is $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ using Overlap-save me	
(Thi	is paper contains 2 pages) 1	P.T.O.

Code No.: 5147/M

- 13. Determine 8-point DFT of the sequence $x(n) = \{3, -1, 4, 5, 9, -8, 7, 10\}$ using DIF FFT algorithm. 10

14. Design an ideal HPF whose desired frequency response is

$$\begin{aligned} H_d(e^{j\omega}) &= \quad 1 \ , \quad \pi \geq \mid \omega \mid \geq \frac{\pi}{3} \\ &= \quad 0 \ , \quad \text{otherwise} \end{aligned}$$

using Bartlett Window for N = 9.

10

15. Design a digital Chebyshev Type – I BPF with the following specifications:

$$\begin{array}{lll} H(e^{j\omega}) = & -3 \text{ dB }, & 0.55 \text{ } \pi \leq \omega \leq 0.65 \text{ } \pi \\ & = & -15 \text{ dB}, & 0 \leq \omega \leq 0.1 \text{ } \pi \text{ and } 0.95 \text{ } \pi \leq \omega \leq \pi \end{array}$$

Using bilinear Transformation.

10

- 16. Explain various CPU components of TMS 320 C 54 xx processor with the help of a neat block diagram. 10

- 17. Write short notes on:
 - a) Sampling of analog signals.

3

b) RISC Vs CISC CPU.

4

c) Advantages of FFT algorithm.

3