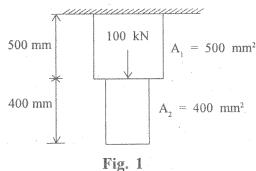
FACULTY OF ENGINEERING

B.E. 4/4 (Mech./Prod.) I-Semester (Supplementary) Examination, June/July, 2011 FINITE ELEMENT ANALYSIS

Time: Three Hours] [Maximum Marks: 75


Answer ALL questions from Part A. Answer any FIVE questions from Part B.

PART—A (Marks: 25)

1.	List various steps of the finite element method.	3
2.	State the properties of stiffness matrix of a C° element.	2
3.	Explain the condition to be applied for the analysis of a 3-d uniform body.	2
4.	Explain the terms: reduced and consistent loading.	2
5.	What is continuity? Explain C ^m continuity, C ⁰ , C ¹ elements.	3
6.	List the essential features required for the interpolation functions.	2
7.	Explain how the principle of minimum potential energy is applied in formulation of a	a finite
	element problem.	3
8.	Explain how two-dimensional analysis will be applied to solve the axisymmetric pro	blem.
1441		2
9.	Explain the terms: eigen values, eigen vectors in a vibration problem.	3
10.	Explain why isoparametric formulation is most relevant for practical problems.	3

PART-B (Marks: 50)

11. The vertically supported stepped bar is shown in Fig. 1. The specific weight is 75 kN/m³. A point load of 100 kN acts at the middle node. Determine the stress in each element and the support reaction. Take E = 200 GPa.

HVS-870

(Contd.)

12. Determine the displacements of node 2 and the stress in the element 2 for the two-bar truss shown in Fig. 2. Area of cross-section of each element is A = 200 mm², E = 70 GPa.

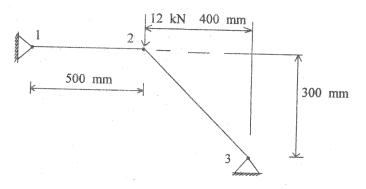


Fig. 2

13. Determine the deflection at the tip of the cantilever for the beam shown in Fig. 3. Take I of the beam = 120×10^{-6} m⁴. E = 200 GPa.

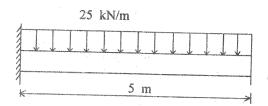


Fig. 3

14. Determine the nodal load vector for the point load acting on a Q_4 element as shown in Fig. 4.

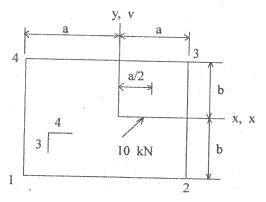


Fig. 4

HVS--870

2

(Contd.)

15. For the quadratic isoparametric triangle shown in Fig. 5, obtain the Jacobian.

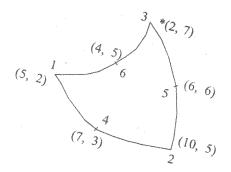


Fig. 5

- 16. Obtain the temperature distribution in a pin fin of 1 mm diameter, 50 mm long, made of aluminum. The surface of the wall is maintained at 300°C. The surrounding air temperature is 30°C. Use $K = 200 \text{ W/m}^{\circ}\text{C}$ for aluminum, $h = 20 \text{ W/m}^{2}$ °C for the surface. Assume the tip is insulated.
- 17. Using a single finite element, determine the natural frequencies of vibration of a cantilever beam of length L, assuming constant values of P, E and A.