Total No. of Questions : 12]	SEAT No. :
P1055	[Total No. of Pages : 4

[4659]-23

B.E. (Civil Engineering)

c-STATISTICALANALYSIS & COMPUTATIONAL METHODS IN CIVIL ENGINEERING

(2008 Course) (Elective-IV) (Semester-II)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Write Q. No. 1 or Q. No. 2; Q. No. 3 or Q. No. 4; Q. No. 5 or Q. No. 6 in Section-I, and Q. No. 7 or Q. No. 8; Q. No. 9 or Q. No. 10; Q. No. 11 or Q. No. 12 in Section-II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Your answers will be valued as a whole.
- 6) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 7) Assume suitable data, if necessary.

SECTION-I

Q1) a) The following data shows the height of 50 nano-pillars in a nanotechnology setting. Determine mean, median, mode and standard deviation.

X	206-245	246-285	286-325	326-365	366-405
Frequency	3	11	23	9	4

b) Define the following:

[8]

i) Variance

ii) Coefficient of variance

iii) Mean

iv) Standard deviation

OR

Q2) a) The BOD concentration in a river is given in the following table. Determine mean, standard deviation and Pearson's first skewness coefficient for this data.

X	0-1	1-2	2-3	3-4	4-5	5-6
Frequency	12	94	170	188	28	8

b) Explain utility of statistics in engineering applications.

[8]

- **Q3)** a) The time required to assemble a piece of machinery is a random variable having normal distribution with $\mu = 12.9$ min. and $\sigma = 2.0$ min. What is the probability that assembly will take
 - i) At least 11.5 min.

ii) Anywhere from 11.0 to 14.8 min.

[6]

Use the standard normal distribution table given below:

Z	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Area	0.000	0.0398	0.0793	0.1179	0.1554	0.1915	0.2257	0.258	0.2881
Z	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
Area	0.3159	0.3413	0.3643	0.3849	0.4032	0.4192	0.4332	0.4452	0.4554
Z	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	
Area	0.4641	0.4713	0.4772	0.4821	0.4861	0.4893	0.4918	0.4938	

b) Test the goodness of fit for the following data for Poisson distribution at 5% level of significance with $\lambda = 3.2$. [10]

X	0	1	2	3	4	5	6	7	8	9
Frequency	9	43	64	62	42	36	22	14	6	2

Use the following chi-square distribution table for $\alpha = 0.05$.

ν	2	3	4	5	6	7
χ^2	5.99	7.8147	9.4877	11.07	12.59	14.067

OR

- **Q4)** a) Explain what do you mean by a standard normal distribution. State the properties of normal distribution. [6]
 - b) Test the goodness of fit for the following data for normal distribution at 5% level of significance. [10]

X	< 50	50-60	60-70	70-80	80-90
Frequency	2	7	10	15	9

Use the standard normal distribution table given in Q. 3a.

Use the Chi-square distribution table for $\alpha = 0.05$ given in Q. 3 b.

L ey (1)	leas	t square	_	o paras		1010	re wing dual daing the mean	[10]
	X	10	12	15	23	20		
	Y	14	17	23	25	21		
b)	Exp	lain Ne	wton in	terpola	tion for	mula.		[8]
					OR	_		
Q6) a)	If y	(75) = 2	246; y(8	30) = 20)2; y(8:	5) = 11	8; $y(90) = 40$; Find $y(79)$.	[10]
b)	Exp	lain sin	gle and	multip	le regre	ession.		[8]
					ECTI(
Q7) a)					auss eli	minati	on method.	[8]
	1	$+ x_2 + 3$	3					
	1	$+4x_{2}+$	3					
	1	$+5x_{2}+$	3					
b)	Solve the following using Gauss-Seidel method (3 iterations).						[8]	
	$2x_1$	$+2x_{2}+$	$4x_3 = 1$	$18; x_1 +$	-	5	$13; 3x_1 + x_2 + 3x_3 = 14.$	
20)	G 1	.1 0	- 11	1 0	OR			101
Q8) a)		ve the fo						[8]
1)	1	2 3		1	2	5	$-3x_1 + 4x_2 + x_3 = 1.$	[0]
b)							l method (3 iterations).	[8]
	$2x_1$	$+x_2-x$	$c_3 = 1;$	$5x_1 + 2x_1$	$x_2 + 2x$	$_{3}=-4;$	$3x_1 + x_2 + x_3 = 5.$	
Q9) a)	Exp	lain:						[8]
2) a)	i)		ion me	thod.				[0]
	ii)		positio		od.			
b)	Fine		•			which	lies between 0 and 1.	[8]
ŕ					OR	_		
<i>Q10)</i> a)	Exp	lain:						[8]
	i)	Newto	on Rapl	nson m	ethod.			
	ii)	Secan	t Metho	od.				
b)	Fine	d the ro	ot of x^3	-x-1	l=0 us	sing Bi	isection method.	[8]
[4659]-2	3				3			

Fit a second degree parabola to the following data using the method of

Q5) a)

Q11)a) Explain:

[8]

- i) Trapezoidal rule.
- ii) Simpsons 1/3rd rule.

b) Find area under the curve

[10]

X	1	2	3	4
У	1	4	9	16

OR

Q12)a) Explain need and scope of numerical integration.

[8]

b) Explain:

[10]

- i) Simpsons 3/8th rule.
- ii) Gauss Quadrature method.

••••