

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is
a) divergent
b) convergent
c) absolutely convergent
d) none of these.
ii) The sequence $\left\{x_{n}\right\}$, where $x_{n}=\frac{2 n-1}{n+1}, n \in N \quad$ is bounded by
a) 2
b) 3
c) $\frac{1}{2}$
d) none of these.

CS /B.Sc. (H), (BT)/SEM-2 / BMT-204/2011
iii) The eigenvalues of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ are
a) 6,1
b) 3,2
c) 6,3
d) none of these.
iv) A square matrix A is called orthogonal if
a) $\quad A=A^{2}$
b) $\quad A^{T}=A^{-1}$
c) $A A^{-1}=I$
d) none of these.
v) If two eigenvalues of $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ are 3 and 15, then the third eigenvalue is
a) 0
b) 1
c) 4
d) none of these.
vi) Three lines are co-planer if
a) they are concurrent
b) a line is perpendicular to each of them
c) they are concurrent and a line in perpendicular to each of them
d) none of these.
vii) The equation of a straight line parallel to the X-axis is given by
a) $\frac{x-a}{1}=\frac{y-b}{1}=\frac{z-c}{1}$
b) $\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1}$
c) $\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$
d) $\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}$.
viii) If two non-zero vectors \vec{A} and \vec{B} are parallel then
a) $\vec{A} \times \vec{B}=\overrightarrow{0}$
b) $\quad|\vec{A} \times \vec{B}|=1$
c) $\vec{A} \cdot \vec{B}=0$
d) $\quad|\vec{A}|=|\vec{B}|$.
ix) The differential equation satisfying the relation $x=A \cos (m t-\alpha)$ is
a) $\frac{\mathrm{d} x}{\mathrm{~d} t}=1-x^{2}$
b) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\alpha^{2} x$
c) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-m^{2} x$
d) $\frac{\mathrm{d} x}{\mathrm{~d} t}=-m^{2} x$.
x) The order the differential equation $\left\{1+\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right\}^{\frac{1}{2}}=x^{2}$ is
a) 1
b) 2
c) 3
d) none of these.
xi) The value of $\Gamma(3 \cdot 5)$ is
a) $\frac{15 \sqrt{\pi}}{8}$
b) $15 \sqrt{\pi}$
c) $\frac{3 \sqrt{\pi}}{4}$
d) none of these.

CS /B.Sc. (H), (BT)/SEM-2/BMT-204/2011
xii) The complementary function of the differential equation $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=0$ is

a) $\left(c_{1}+c_{2} t\right) e^{-3 t}$
b) $\quad\left(c_{1} e^{-3 t}+c_{2} e^{-2 t}\right)$
c) $\quad c_{1} e^{-2 t}+c_{2} e^{t}$
d) none of these.
xiii) The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{10^{n}}{\boxed{n}} x^{n}$ is
a) 10
b) $\frac{1}{10}$
c) 5
d) $\frac{1}{5}$.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. a) Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=0$
b) Find the particular integral of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+2 x+4$.
3. a) Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
b) Find the rank of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$. $2+3$
4. a) Show that any square matrix A and its transpoose A^{T} have same eigenvalues.
b) Find the product of the eigenvalues of the matrix $\left[\begin{array}{ccc}2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2\end{array}\right]$.
5. a) If $\vec{a}=3 \vec{i}-\vec{j}+2 \vec{k}, \vec{b}=2 \vec{i}+\vec{j}-\vec{k}$ and $\vec{c}=\vec{i}-2 \vec{j}+2 \vec{k}$ then verify $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$.
b) If $\vec{\alpha}=3 \vec{i}-\vec{j}+2 \vec{k}, \vec{\beta}=2 \vec{i}+\vec{j}-\vec{k}$ and $\vec{\gamma}=\vec{i}-2 \vec{j}+2 \vec{k}$ then show that $(\vec{\alpha} \times \vec{\beta}) \times \vec{\gamma} \neq \vec{\alpha} \times(\vec{\beta} \times \vec{\gamma})$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
6. a) If two mappings $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as follows : $f(x)=x^{2}, g(x)=x-2$, then show that $f \circ g \neq g \circ f$.
b) Show that the mapping $f: R \rightarrow R$ defined by $f(x)=7 x+3, x \in R$ is bijective.
c) The binary operation * is defined on the set of integers Z as $a^{*} b=a+b-2$, for all $a, b \in Z$. Show that ($Z,{ }^{*}$) is a group.
d) In a group G, if every element is its own inverse, then show that the group G is commutative. $2+3+5+5$

CS /B.Sc. (H), (BT)/SEM-2/BMT-204/2011
7. a) Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=$ $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are co-planar.
b) Prove that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{1+z}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ intersect and find the co-ordinates of their point of intersection.
c) Find the equation of the line through (1, 2, - 1) perpendicular to each of the lines $\frac{x}{1}=\frac{y}{0}=\frac{z}{-1}$ and $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$. $5+5+5$
8. a) Examine the convergence of the series

$$
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \ldots \ldots
$$

b) Discuss the convergence of the following series:
i) $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+$ \qquad .∞
ii) $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+$ \qquad
c) Discuss the conditional convergence of

$$
\begin{array}{r}
\frac{1}{2^{3}}-\frac{1}{3^{3}}(1+2)+\frac{1}{4^{3}}(1+2+3)-\frac{1}{5^{3}}(1+2+3+4)+\ldots \ldots \infty \\
3+4+4+4
\end{array}
$$

9. a) Let $f(x)=|x|$ in [$-1,1$]. Is Rolle's theorem applicable to $f(x)$ in $[-1,1]$? Justify your answer.
b) In the Lagrange's mean value theorem $f(b)-f(a)=(b-a) f^{\prime}(c)$ where $a<c<b$, find c if $f(x)=\sqrt{x}, a=4, b=9$.
c) Express the following integrals in terms of gamma function :
i) $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x$
ii) $\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} \mathrm{~d} x$.

$$
3+4+4+4
$$

10. a) Solve any three of the following :
i) $\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{-2 x}+e^{-3 x}$
ii) $\left(D^{4}-2 D^{2}+1\right) y=x^{2} \cos x$
iii) $\left(D^{2}+a^{2}\right) y=\sec a x$
iv) $(D-2)^{2}=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$.
b) Show that the sequence $\left\{\frac{3 n-1}{2 n+1}\right\}, n \in N$ is convergent.

$$
3 \times 4+3
$$

