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UNIT-II

SEARCHING TECHNIQUES

INFORMED SEARCH AND EXPLORATION :-

Informed(Heuristic) Search Strategies 

Informed search strategy is one that uses problem-specific knowledge beyond the 

definition of the problem itself. It can find solutions more efficiently than uninformed strategy. 

Best-first search

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH 

algorithm in which a node is selected for expansion based on an evaluation function f(n). The 

node with lowest evaluation is selected for expansion,because the evaluation measures the 

distance to the goal. 

This can be implemented using a priority-queue,a data structure that will maintain the 

fringe in ascending order of f-values. 

Heuristic functions 

A heuristic function or simply a heuristic is a function that ranks alternatives in various 

search algorithms at each branching step basing on an available information in order to make a 

decision which branch is to be followed during a search. 

The key component of Best-first search algorithm is a heuristic function,denoted by 

h(n): 

h(n) = extimated cost of the cheapest path from node n to a goal node. 

For example,in Romania,one might estimate the cost of the cheapest path from Arad to 

Bucharest via a straight-line distance from Arad to Bucharest(Figure 2.1). 

Heuristic function are the most common form in which additional knowledge is imparted to the 

search algorithm. 

Greedy Best-first search :-

 Greedy best-first search tries to expand the node that is closest to the goal,on the 

grounds that this is likely to a solution quickly. 
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 It evaluates the nodes by using the heuristic function f(n) = h(n). 

 Taking the example of Route-finding problems in Romania , the goal is to reach 

Bucharest starting from the city Arad. We need to know the straight-line distances 

to Bucharest from various cities as shown in Figure 2.1. For example, the initial 

state is In(Arad) ,and the straight line distance heuristic hSLD(In(Arad)) is found 

to be 366. 

 Using the straight-line distance heuristic hSLD ,the goal state can be reached 

faster.
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Figure 2.2 shows the progress of greedy best-first search using hSLD to find a path from 

Arad to Bucharest. The first node to be expanded from Arad will be Sibiu,because it is closer to 

Bucharest than either Zerind or Timisoara. The next node to be expanded will be 

Fagaras,because it is closest. 

Fagaras in turn generates Bucharest,which is the goal.

Properties of greedy search 

 Complete?? No–can get stuck in loops, e.g., 
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 Iasi ! Neamt ! Iasi ! Neamt ! 

 Complete in finite space with repeated-state checking 

 Time?? O(bm), but a good heuristic can give dramatic improvement 

 Space?? O(bm)—keeps all nodes in memory 

 Optimal?? No 

Greedy best-first search is not optimal,and it is incomplete. 

The worst-case time and space complexity is O(bm),where m is the maximum depth of the 

search space. 

A* Search 

A* Search is the most widely used form of best-first search. The evaluation function f(n) is 

obtained by combining 

(1) g(n) = the cost to reach the node,and 

(2) h(n) = the cost to get from the node to the goal : 

f(n) = g(n) + h(n). 

A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. The 

obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be an 

overestimate. 

A* Search is optimal if h(n) is an admissible heuristic – that is,provided that h(n) never 

overestimates the cost to reach the goal. 

An obvious example of an admissible heuristic is the straight-line distance hSLD that we used in 

getting to Bucharest. The progress of an A* tree search for Bucharest is shown in Figure 2.2. 

The values of ‗g ‗ are computed from the step costs shown in the Romania map( figure 2.1). 

Also the values of hSLD are given in Figure 2.1. 

Recursive Best-first Search(RBFS) :-

Recursive best-first search is a simple recursive algorithm that attempts to mimic the 

operation of standard best-first search,but using only linear space. The algorithm is shown in 

figure 2.4. 
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Its structure is similar to that of recursive depth-first search,but rather than continuing 

indefinitely down the current path,it keeps track of the f-value of the best alternative path 

available from any ancestor of the current node. 

If the current node exceeds this limit,the recursion unwinds back to the alternative path. 

As the recursion unwinds,RBFS replaces the f-value of each node along the path with the best f-

value of its children. 

Figure 2.5 shows how RBFS reaches Bucharest.
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Heuristic Functions 

A heuristic function or simply a heuristic is a function that ranks alternatives in various 

search algorithms at each branching step basing on an available information in order to make a 

decision which branch is to be followed during a search
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The 8-puzzle 

The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to 

slide the tiles horizontally or vertically into the empty space until the configuration matches the 

goal configuration(Figure 2.6) 

The average cost for a randomly generated 8-puzzle instance is about 22 steps. The 

branching factor is about 3.(When the empty tile is in the middle,there are four possible 

moves;when it is in the corner there are two;and when it is along an edge there are three). This 

means that an exhaustive search to depth 22 would look at about 322 approximately = 3.1 X 

1010 states. 

By keeping track of repeated states,we could cut this down by a factor of about 

170,000,because there are only 9!/2 = 181,440 distinct states that are reachable. This is a 

manageable number ,but the corresponding number for the 15-puzzle is roughly 1013. 

If we want to find the shortest solutions by using A*,we need a heuristic function that 

never overestimates the number of steps to the goal. 

The two commonly used heuristic functions for the 15-puzzle are : 

(1) h1 = the number of misplaced tiles. 

For figure 2.6 ,all of the eight tiles are out of position,so the start state would have h1 = 8. h1 is 

an admissible heuristic
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(2) h2 = the sum of the distances of the tiles from their goal positions. This is called the city 

block distance or Manhattan distance. h2 is admissible ,because all any move can do is move 

one tile one step closer to the goal. 

Tiles 1 to 8 in start state give a Manhattan distance of 

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18. 

Neither of these overestimates the true solution cost ,which is 26. 

The Effective Branching factor :-

One way to characterize the quality of a heuristic is the effective branching factor b*. 

If the total number of nodes generated by A* for a particular problem is N,and the solution 

depth is d,then b* is the branching factor that a uniform tree of depth d would have to have in 

order to contain N+1 nodes. Thus, 

N + 1 = 1 + b* + (b*)2+…+(b*)d 

A well designed heuristic would have a value of b* close to 1,allowing failru large 

problems to be solved. 

To test the heuristic functions h1 and h2,1200 random problems were generated with 

solution lengths from 2 to 24 and solved them with iterative deepening search and with 

A* search using both h1 and h2. Figure 2.7 gives the averaghe number of nodes 

expanded by each strategy and the effective branching factor. 

The results suggest that h2 is better than h1,and is far better than using iterative 

deepening search. 

For a solution length of 14,A* with h2 is 30,000 times more efficient than uninformed 

iterative deepening search.
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LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS :-

 In many optimization problems, the path to the goal is irrelevant; the goal state itself is 

the solution 

 For example,in the 8-queens problem,what matters is the final configuration of 

queens,not the order in which they are added. 

 In such cases, we can use local search algorithms. They operate using a single current 

state(rather than multiple paths) and generally move only to neighbors of that state. 

 The important applications of these class of problems are (a) integrated-circuit 

design,(b)Factory-floor layout,(c) job-shop scheduling,(d)automatic 

programming,(e)telecommunications network optimization,(f)Vehicle routing,and (g) 

portfolio management. 

Key advantages of Local Search Algorithms 

(1) They use very little memory – usually a constant amount; and 

(2) they can often find reasonable solutions in large or infinite(continuous) state spaces for which 

     systematic algorithms are unsuitable. 
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OPTIMIZATION PROBLEMS :-

Inaddition to finding goals,local search algorithms are useful for solving pure 

optimization problems,in which the aim is to find the best state according to an objective 

function. 

State Space Landscape 

To understand local search,it is better explained using state space landscape as shown in 

figure 2.8. 

A landscape has both ―location‖ (defined by the state) and ―elevation‖(defined by the 

value of the heuristic cost function or objective function). 

If elevation corresponds to cost,then the aim is to find the lowest valley – a global 

minimum; if elevation corresponds to an objective function,then the aim is to find the highest 

peak – a global maximum. 

Local search algorithms explore this landscape. A complete local search algorithm 

always finds a goal if one exists; an optimal algorithm always finds a global 

minimum/maximum.

Hill-climbing search 
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The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that 

continually moves in the direction of increasing value – that is,uphill. It terminates when it 

reaches a ―peak‖ where no neighbor has a higher value.

Problems with hill-climbing 

Hill-climbing often gets stuck for the following reasons : 

 Local maxima : a local maximum is a peak that is higher than each of its neighboring 

states,but lower than the global maximum. Hill-climbing algorithms that reach the 

vicinity 

 of a local maximum will be drawn upwards towards the peak,but will then be stuck with 

nowhere else to go 

 Ridges : A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima 

that is very difficult for greedy algorithms to navigate. 

 Plateaux : A plateau is an area of the state space landscape where the evaluation function 

is flat. It can be a flat local maximum,from which no uphill exit exists,or a shoulder,from 

which it is possible to make progress. 
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Hill-climbing variations :-

� Stochastic hill-climbing 

 Random selection among the uphill moves. 

 The selection probability can vary with the steepness of the uphill move. 

� First-choice hill-climbing 

 cfr. stochastic hill climbing by generating successors randomly until a better one is found. 

� Random-restart hill-climbing 

 Tries to avoid getting stuck in local maxima. 

Simulated annealing search 

A hill-climbing algorithm that never makes ―downhill‖ moves towards states with lower 

value(or higher cost) is guaranteed to be incomplete,because it can stuck on a local maximum.In 

contrast,a purely random walk –that is,moving to a successor choosen uniformly at random from 

the set of successors – is complete,but extremely inefficient. Simulated annealing is an algorithm 
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that combines hill-climbing with a random walk in someway that yields both efficiency and 

completeness. 

Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. 

Instead of picking the best move,however,it picks the random move. 

If the move improves the situation,it is always accepted. Otherwise,the algorithm accepts 

the move with some probability less than 1. The probability decreases exponentially with the 

―badness‖ of the move – the amount E by which the evaluation is worsened.

Genetic algorithms :-

A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor 

states are generated by combining two parent states,rather than by modifying a single state. 

Like beam search,Gas begin with a set of k randomly generated states,called the 

population. Each state,or individual,is represented as a string over a finite alphabet – most 

commonly,a string of 0s and 1s. For example,an 8 8-quuens state must specify the positions of 8 

queens,each in acolumn of 8 squares,and so requires 8 x log2 8 = 24 bits.

LOCAL SEARCH IN CONTINUOUS SPACES :-
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 We have considered algorithms that work only in discrete environments, 

but real-world environment are continuous 

 Local search amounts to maximizing a continuous objective functionin a multi-

dimensional vector space. 

� This is hard to do in general. 

� Can immediately retreat 

 Discretize the space near each state 

 Apply a discrete local search strategy (e.g., stochastic hill climbing,simulated annealing) 

� Often resists a closed-form solution 

 Fake up an empirical gradient 

 Amounts to greedy hill climbing in discretized state space 

� Can employ Newton-Raphson Method to find maxima 

� Continuous problems have similar problems: plateaus, ridges, local maxima, etc.

Online Search Agents and Unknown Environments :-

Online search problems 

 Offline Search (all algorithms so far) 

 Compute complete solution, ignoring environment Carry out action sequence 

 Online Search 

 Interleave computation and action 

 Compute—Act—Observe—Compute—· 

 Online search good 

 For dynamic, semi-dynamic, stochastic domains 
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 Whenever offline search would yield exponentially many contingencies 

 Online search necessary for exploration problem 

 States and actions unknown to agent 

 Agent uses actions as experiments to determine what to do 



Examples :-

Robot exploring unknown building Classical hero escaping a labyrinth 

� Assume agent knows 

� Actions available in state s Step-cost function c(s,a,s′) State s is a goal state 

� When it has visited a state s previously Admissible heuristic function h(s ) 

� Note that agent doesn‘t know outcome state (s ′ ) for a given action (a) until it tries the action 

   (and all actions from a state s ) 

� Competitive ratio compares actual cost with cost agent would follow if it knew the search   

     space 

� No agent can avoid dead ends in all state spaces 

� Robotics examples: Staircase, ramp, cliff, terrain 

� Assume state space is safely explorable—some goal state is always reachable 

Online Search Agents :-

� Interleaving planning and acting hamstrings offline search 

� A* expands arbitrary nodes without waiting for outcome of action Online algorithm can 

     expand only the node it physically occupies Best to explore nodes in physically local order 
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� Suggests using depth-first search 

� Next node always a child of the current 

� When all actions have been tried, can‘t just drop state Agent must physically backtrack 

� Online Depth-First Search 

� May have arbitrarily bad competitive ratio (wandering past goal) Okay for exploration; bad for 

     minimizing path cost 

� Online Iterative-Deepening Search 

� Competitive ratio stays small for state space a uniform tree 

Online Local Search :-

� Hill Climbing Search 

� Also has physical locality in node expansions Is, in fact, already an online search algorithm 

� Local maxima problematic: can‘t randomly transport agent to new state in effort to escape 

local maximum 

� Random Walk as alternative 

� Select action at random from current state 

� Will eventually find a goal node in a finite space 

� Can be very slow, esp. if ―backward‖ steps as common as ―forward‖
� Hill Climbing with Memory instead of randomness 

� Store ―current best estimate‖ of cost to goal at each visited state Starting estimate is just h(s ) 

� Augment estimate based on experience in the state space Tends to ―flatten out‖ local 

minima, allowing progress Employ optimism under uncertainty 

� Untried actions assumed to have least-possible cost Encourage exploration of untried paths 

Learning in Online Search 

o Rampant ignorance a ripe opportunity for learning Agent learns a ―map‖ of the environment 

o Outcome of each action in each state 

o Local search agents improve evaluation function accuracy 
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o Update estimate of value at each visited state 

o Would like to infer higher-level domain model 

o Example: ―Up‖ in maze search increases y -coordinate Requires 

o Formal way to represent and manipulate such general rules (so far, have hidden rules within 

the successor function) 

o Algorithms that can construct general rules based on observations of the effect of actions 

CONSTRAINT SATISFACTION PROBLEMS(CSP) :-

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables 

,X1,X2,….Xn,and a set of constraints C1,C2,…,Cm. Each variable Xi has a nonempty domain 

D,of possible values. Each constraint Ci involves some subset of variables and specifies the 

allowable combinations of values for that subset. 

A State of the problem is defined by an assignment of values to some or all of the 

variables,{Xi = vi,Xj = vj,…}. An assignment that does not violate any constraints is called a 

consistent or legal assignment. A complete assignment is one in which every variable is 

mentioned,and a solution to a CSP is a complete assignment that satisfies all the constraints. 

Some CSPs also require a solution that maximizes an objective function. 

Example for Constraint Satisfaction Problem : 

Figure shows the map of Australia showing each of its states and territories. We are given 

the task of coloring each region either red,green,or blue in such a way that the neighboring 

regions have the same color. To formulate this as CSP ,we define the variable to be the regions 

:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set {red,green,blue}.The 

constraints require neighboring regions to have distinct colors;for example,the allowable 

combinations for WA and NT are the pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. 
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The constraint can also be represented more succinctly as the inequality WA not = 

NT,provided the constraint satisfaction algorithm has some way to evaluate such expressions.) 

There are many possible solutions such as 

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}.

CSP can be viewed as a standard search problem as follows : 

� Initial state : the empty assignment {},in which all variables are unassigned. 

� Successor function : a value can be assigned to any unassigned variable,provided that it does    

     not conflict with previously assigned variables. 

� Goal test : the current assignment is complete. 

� Path cost : a constant cost(E.g.,1) for every step. 

Every solution must be a complete assignment and therefore appears at depth n if there are n 

variables. 

Depth first search algorithms are popular for CSPs 
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Varieties of CSPs :-

(i) Discrete variables 

Finite domains 

The simplest kind of CSP involves variables that are discrete and have finite domains. 

Map coloring problems are of this kind. The 8-queens problem can also be viewed as finite-

domain

CSP,where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and each 

variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a CSP 

is d,then the number of possible complete assignments is O(dn) – that is,exponential in the 

number of variables. Finite domain CSPs include Boolean CSPs,whose variables can be either 

true or false. 

Infinite domains 

Discrete variables can also have infinite domains – for example,the set of integers or the 

set of strings. With infinite domains,it is no longer possible to describe constraints by 

enumerating all allowed combination of values. Instead a constraint language of algebric 

inequalities such as 

Startjob1 + 5 <= Startjob3. 

(ii) CSPs with continuous domains 

CSPs with continuous domains are very common in real world. For example ,in operation 

research field,the scheduling of experiments on the Hubble Telescope requires very precise 

timing of observations; the start and finish of each observation and maneuver are continuous-

valued variables that must obey a variety of astronomical,precedence and power constraints. The 

best known category of continuous-domain CSPs is that of linear programming 

problems,where the constraints must be linear inequalities forming a convex region. Linear 

programming problems can be solved in time polynomial in the number of variables. 

Varieties of constraints : 

(i) unary constraints involve a single variable. 
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Example : SA # green 

(ii) Binary constraints involve paris of variables. 

Example : SA # WA 

(iii) Higher order constraints involve 3 or more variables. 

Example : cryptarithmetic puzzles.

ADVERSARIAL SEARCH :-

Competetive environments,in which the agent‘s goals are in conflict,give rise to 

adversarial search problems – often known as games. 

Games 

Mathematical Game Theory,a branch of economics,views any multiagent environment 

as a game provided that the impact of each agent on the other is ―significant‖,regardless of 

whether the agents are cooperative or competitive. In,AI,‖games‖ are deterministic,turn-

taking,two-player,zero-sum games of perfect information. This means deterministic,fully 

observable environments in which there are two agents whose actions must alternate and in 

which the utility values at the end of the game are always equal and opposite. For example,if 

one player wins the game of chess(+1),the other player necessarily loses(-1). It is this opposition 

between the agents‘ utility functions that makes the situation adversarial. 

Formal Definition of Game 

We will consider games with two players,whom we will call MAX and MIN. MAX 

moves first,and then they take turns moving until the game is over. At the end of the game, 

points are awarded to the winning player and penalties are given to the loser. A game can be 

formally defined as a search problem with the following components : 

o The initial state,which includes the board position and identifies the player to move. 

o A successor function,which returns a list of (move,state) pairs,each indicating a legal move 

and the resulting state. 
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o A terminal test,which describes when the game is over. States where the game has ended are 

called terminal states. 

o A utility function (also called an objective function or payoff function),which give a numeric 

value for the terminal states. In chess,the outcome is a win,loss,or draw,with values +1,-1,or 0. 

he payoffs in backgammon range from +192 to -192. 

Game Tree 

The initial state and legal moves for each side define the game tree for the game. Figure 2.18 

shows the part of the game tree for tic-tac-toe (noughts and crosses).

From the initial state,MAX has nine possible moves. Play alternates between MAX‘s 

placing an X and MIN‘s placing a 0 until we reach leaf nodes corresponding to the terminal 

states such that one player has three in a row or all the squares are filled. He number on each leaf 

node indicates the utility value of the terminal state from the point of view of MAX;high values 

are assumed to be good for MAX and bad for MIN. It is the MAX‘s job to use the search 

tree(particularly the utility of terminal states) to determine the best

Alpha-Beta Pruning 

The problem with minimax search is that the number of game states it has to examine is 

exponential in the number of moves. Unfortunately,we can‘t eliminate the exponent,but we can 

effectively cut it in half. By performing pruning,we can eliminate large part of the tree from 

consideration. We can apply the technique known as alpha beta pruning ,when applied to a 

minimax tree ,it returns the same move as minimax would,but prunes away branches that 

cannot possibly influence the final decision. 

Alpha Beta pruning gets its name from the following two parameters that describe 

bounds on the backed-up values that appear anywhere along the path: 

o α : the value of the best(i.e.,highest-value) choice we have found so far at any choice point 

along the path of MAX. 

o β: the value of best (i.e., lowest-value) choice we have found so far at any choice point along 

the path of MIN. 
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Alpha Beta search updates the values of α and β as it goes along and prunes the 

remaining branches at anode(i.e.,terminates the recursive call) as soon as the value of the current 

node is known to be worse than the current α and β value for MAX and MIN,respectively. The 

complete algorithm is given in Figure 2.21. 

The effectiveness of alpha-beta pruning is highly dependent on the order in which the 

successors are examined. It might be worthwhile to try to examine first the successors that are 

likely to be the best. In such case,it turns out that alpha-beta needs to examine only O(bd/2) 

nodes to pick the best move,instead of O(bd) for minimax. This means that the effective 

branching factor becomes sqrt(b) instead of b – for chess,6 instead of 35. Put anotherway alpha-

beta cab look ahead roughly twice as far as minimax in the same amount of time.

Imperfect ,Real-time Decisions 

The minimax algorithm generates the entire game search space,whereas the alpha-beta 

algorithm allows us to prune large parts of it. However,alpha-beta still has to search all the way 

to terminal states for atleast a portion of search space. Shannon‘s 1950 paper,Programming a 

computer for playing chess,proposed that programs should cut off the search earlier and apply a 

heuristic evaluation function to states in the search,effectively turning nonterminal nodes into 

terminal leaves. The basic idea is to alter minimax or alpha-beta in two ways : 

(1) The utility function is replaced by a heuristic evaluation function EVAL,which gives an 

estimate of the position‘s utility,and 

(2) the terminal test is replaced by a cutoff test that decides when to apply EVAL. 

Games that include Element of Chance :-

Evaluation functions 

An evaluation function returns an estimate of the expected utility of the game from a 

given position,just as the heuristic function return an estimate of the distance to the goal. 

Games of imperfect information 

o Minimax and alpha-beta pruning require too much leaf-node evaluations. 
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May be impractical within a reasonable amount of time. 

o SHANNON (1950): 

o Cut off search earlier (replace TERMINAL-TEST by CUTOFF-TEST) 

o Apply heuristic evaluation function EVAL (replacing utility function of alpha-beta) 

Cutting off search 

Change: 

– if TERMINAL-TEST(state) then return UTILITY(state) into 

– if CUTOFF-TEST(state,depth) then return EVAL(state) 

Introduces a fixed-depth limit depth 

– Is selected so that the amount of time will not exceed what the rules of the game allow. 

When cuttoff occurs, the evaluation is performed. 

Heuristic EVAL :-

Idea: produce an estimate of the expected utility of the game from a given position. 

Performance depends on quality of EVAL. 

Requirements: 

– EVAL should order terminal-nodes in the same way as UTILITY. 

– Computation may not take too long. 

– For non-terminal states the EVAL should be strongly correlated with the actual chance of 

winning. 

Only useful for quiescent (no wild swings in value in near future) states 

Weighted Linear Function 

The introductory chess books give an approximate material value for each piece : each 

pawn is worth 1,a knight or bishop is worth 3,a rook 3,and the queen 9. These feature values are 
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then added up toobtain the evaluation of the position. Mathematically,these kind of evaluation 

fuction is called weighted linear function,and it can be expressed as : 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

• e.g., w1 = 9 with 

f1(s) = (number of white queens) – (number of black queens), etc.


