

CS/B.Tech(N)/SEM-1/ES-101/2012-13 2012

BASIC ELECTRICAL \& ELECTRONICS ENGINEERING - I

\author{

Time Allotted : 3 Hours

}

Full Marks : 70
THIS QUESTION BOOKLET CONSISTS OF 2 PARTS PART I \& PART II.
TO ANSWER THE QUESTIONS USE SEPARATE ANSWER BOOKS FOR SEPARATE PARTS.
DO NOT ANSWER BOTH THE PARTS IN THE SAME ANSWER-BOOK.

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

PART - I
(Marks: 35)
GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following :

$$
5 \times 1=5
$$

i) Conductance is analogous to
a) permeance
b) flux
c) reluctance
d) inductance.
ii) Energy stored by a capacitor is given by
a) $\frac{1}{2} C V^{2}$

b) $\frac{1}{2} Q V$
c) $\frac{Q^{2}}{2 C}$
iii) In an electrical circuit, if the current lags the voltage by 60°, the circuit nature is
a) $\quad R-C$
b) $\quad R-L$
c) $\quad L C$
d) none of these.
iv) Kirchhoff's voltage law is used for
a) loop analysis
b) node analysis
c) finding out equivalent resistance
d) none of these.
v) If $E_{1}=A \sin \omega t$ and $E_{2}=A \sin (\omega t-\theta)$, then
a) $\quad E_{1}$ lags E_{2}
b) $\quad E_{2}$ lags E_{1}
c) $\quad E_{1}$ and E_{2} are in phase
d) none of these.
vi) The bandwidth of a series resonant a.c. circuit is equal to
a) $\quad \frac{R}{(2 \pi L)}$
b) $\frac{1}{(R L C)}$
c) $\frac{1}{(2 \pi R)}$
d) $\frac{1}{(w c)}$.

2. Derive an expression for the resonant frequency of a parallel circuit, one branch consisting of a coil of inductance L and a resistance R and the other branch of capacitance C.
3. Establish the equivalence between Thevenin's and Norton's theorems.
4. Find $V_{A B}$ from the circuit if all the resistances are of same value of 1 ohm .

5. Find the value of load resistance (R_{L}) for which the power source will supply maximum power. Also find the value of the maximum power for the network as shown below :

GROUP - C
(Long Answer Type Questions
Answer any two of the following. $\quad 2 \times 10=20$
6. a) Define power factor of an A.C. circuit. State the disadvantages associated with having a load power factor.
b) The galvanometer shown in the circuit has a resistance of 5 ohms. Find the current through the galvanometer using Thevenin's theorem.

7. a) Find the current in each branch of the network using Kirchhoff's law.

b) Prove that the current in a purely resistive circuit is in phase with applied A.C. voltage and current in a purely capacitive circuit leads applied voltage by 90° and also draw their waveforms.
8. a) Define self and mutual inductance. Derive an expression for coefficient of coupling (k) involving self inductances $L_{1} \& L_{2}$ and mutual inductance M. 4
b) What is meant by hysteresis in a magnetic circuit ? What is the significance of B-H curve ?
c) Find an expression for the energy stored in a magnetic field.
9. Explain (a) Star-delta conversion, (b) delta-star conversion with the help of a purely resistive circuit. $5+5$

USE SEPARATE ANSWER-BOOK TO ANSWER PART-II QUESTIONS.

PART - II
(Marks : 35)

GROUP - A
 (Multiple Choice Type Guestions)

1. Choose the correct alternatives for any five of the following :

$$
5 \times 1=5
$$

i) A transistor having a high input impedance and a low output impedance is operating in
a) $C B$ mode
b) $C E$ mode
c) $\quad C C$ mode
d) inverted mode.

CS/B.Tech(N)/SEM-1/ES-101/2012-13
ii) $\quad \alpha$ and β of a transistor are related by
a) $\quad \alpha=(\beta+1) / \beta$
b) $\beta=\alpha \mu(1-\alpha)$
c) $\quad \beta=\alpha /(1+\alpha)$
d) $\quad \alpha=\beta /(1-\beta)$.
iii) The ripple factor of a half wave rectifier is
a) 0.482
b) 0.41
c) 1.21
d) $1 \cdot 11$
iv) When both junctions are reverse biased, a transistor operates in
a) active
b) saturation
c) cut-off
d) inverted region.
v) Band gap of Ge is
a) 0.54 eV
b) $1 \cdot 1 \mathrm{eV}$
c) 0.72 eV
d) none of these.
vi) An n-type semiconductor is
a) negatively changed
b) positively charged
c) neutral.

GROUP - B
 (Short Answer Type Guestions)
 Answer any two of the following. $2 \times 5=10$

2. Explain the operation of a full wave rectifier with centre tapped transformer and draw the D.C. output waveform.
3. What is the role of doping of impurities in pure silicon or germanium ? Draw roughly the position of Fermi level for extrinsic semiconductor and explain.
4. Write a sort note on varactor diode.
5. At 300 K , the intrinsic carrier concentration of silicon is $1.5 \times 10^{16} \mathrm{~m}^{-3}$. If the electron and hole mobilities are 0.13 and $0.05 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$, calculate the intrinsic resistivity of Si at 300 K .

GROUP - C

(Long Answer Type Questions)

Answer any two of the following. $2 \times 10=20$
6. a) Write the differences between Zener breakdown and avalanche breakdown.
b) Explain how a Zener diode can act as a voltage regulator.4
c) Write a short note on clipper circuit. 3
7. a) Discuss the static characteristics of transistor in $C B$ configuration.
b) What do you mean by intrinsic semiconductor? Explain drift and diffusion current for a semiconductor . $2+3$
8. a) The reverse saturation current of a NDN transistor operating in CB configuration is $10 \mu \mathrm{~A}$ For an emitter current of 2.4 mA , the collector current is 2.26 mA . Calculate the current gain and base current.
b) Calculate the current I, I_{R} and I_{Z} for the following circuit.

9. Write short notes on any two of the following :
a) Clamper circuit
b) Fermi level
c) Junction capacitance.

