

Invigilator's Signature :

CS/B.Tech(N)/SEM-1/ES-101/2012-13

2012

BASIC ELECTRICAL & ELECTRONICS ENGINEERING – I

Time Allotted : 3 Hours

Full Marks : 70

THIS QUESTION BOOKLET CONSISTS OF 2 PARTS — PART I & PART II. TO ANSWER THE QUESTIONS USE SEPARATE ANSWER BOOKS FOR SEPARATE PARTS. DO NOT ANSWER BOTH THE PARTS IN THE SAME ANSWER-BOOK.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PART – I

(Marks: 35)

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *five* of the following :

 $5 \times 1 = 5$

i) Conductance is analogous to

a) permeance b) flux

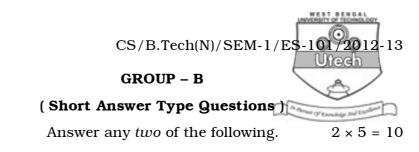
c) reluctance d) inductance.

1251 (N)

[Turn over

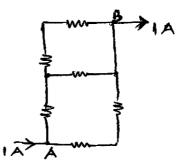
CS/B.Tech(N)/SEM-1/ES-101/2012-13

ii) Energy stored by a capacitor is given by

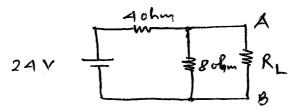

a)
$$\frac{1}{2}CV^2$$

b) $\frac{1}{2}QV$
c) $\frac{Q^2}{2C}$

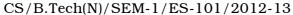
- iii) In an electrical circuit, if the current lags the voltage by 60° , the circuit nature is
 - a) *R*–*C* b) *R*–*L*

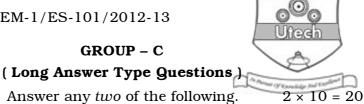

- iv) Kirchhoff's voltage law is used for
 - a) loop analysis
 - b) node analysis
 - c) finding out equivalent resistance
 - d) none of these.
- v) If $E_1 = A \sin \omega t$ and $E_2 = A \sin (\omega t \theta)$, then
 - a) $E_1 \text{ lags } E_2$
 - b) E_2 lags E_1
 - c) E_1 and E_2 are in phase
 - d) none of these.
- vi) The bandwidth of a series resonant a.c. circuit is equal to

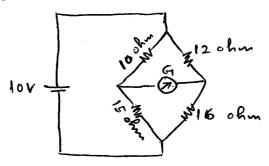
a)
$$\frac{R}{(2\pi L)}$$
 b) $\frac{1}{(RLC)}$
c) $\frac{1}{(2\pi R)}$ d) $\frac{1}{(wc)}$.


1251 (N)

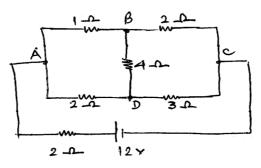
- 2. Derive an expression for the resonant frequency of a parallel circuit, one branch consisting of a coil of inductance *L* and a resistance *R* and the other branch of capacitance *C*.
- 3. Establish the equivalence between Thevenin's and Norton's theorems.
- 4. Find V_{AB} from the circuit if all the resistances are of same value of 1 ohm.




5. Find the value of load resistance (R_L) for which the power source will supply maximum power. Also find the value of the maximum power for the network as shown below :


1251 (N)

[Turn over



- Define power factor of an A.C. circuit. State the 6. a) disadvantages associated with having a load power factor. 4
 - The galvanometer shown in the circuit has a resistance b) of 5 ohms. Find the current through the galvanometer using Thevenin's theorem.

7. Find the current in each branch of the network using a) Kirchhoff's law. 5

Prove that the current in a purely resistive circuit is in b) phase with applied A.C. voltage and current in a purely capacitive circuit leads applied voltage by 90° and also draw their waveforms. 5

1251 (N)

8. a) Define self and mutual inductance. Derive an expression for coefficient of coupling (k) involving self inductances $L_1 \& L_2$ and mutual inductance M. 4

- b) What is meant by hysteresis in a magnetic circuit ?What is the significance of B-H curve ?3
- c) Find an expression for the energy stored in a magnetic field.
 3
- 9. Explain (a) Star-delta conversion, (b) delta-star conversion with the help of a purely resistive circuit.
 5 + 5

USE SEPARATE ANSWER-BOOK TO ANSWER PART-II QUESTIONS.

PART – II

(Marks: 35)

GROUP – A

(Multiple Choice Type Questions)


1. Choose the correct alternatives for any *five* of the following :

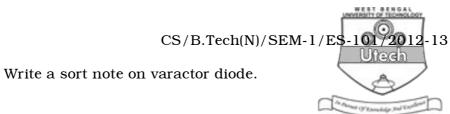
 $5 \times 1 = 5$

- i) A transistor having a high input impedance and a low output impedance is operating in
 - a) *CB* mode b) *CE* mode
 - c) CC mode d) inverted mode.

1251 (N)

[Turn over

c) neutral.


GROUP – B

(Short Answer Type Questions)

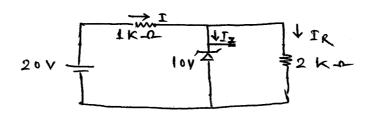
Answer any *two* of the following. $2 \times 5 = 10$

- 2. Explain the operation of a full wave rectifier with centre tapped transformer and draw the D.C. output waveform.
- What is the role of doping of impurities in pure silicon or germanium ? Draw roughly the position of Fermi level for extrinsic semiconductor and explain.

^{1251 (}N)

5. At 300 K, the intrinsic carrier concentration of silicon is $1.5 \times 10^{16} \text{ m}^{-3}$. If the electron and hole mobilities are $0.13 \text{ and } 0.05 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$, calculate the intrinsic resistivity of Si at 300 K.

4.


GROUP – C

(Long Answer Type Questions)

Answer any *two* of the following. $2 \times 10 = 20$

- 6. a) Write the differences between Zener breakdown and avalanche breakdown. 3
 - b) Explain how a Zener diode can act as a voltage regulator.
 - c) Write a short note on clipper circuit. 3
- 7. a) Discuss the static characteristics of transistor in *CB* configuration. 5
 - b) What do you mean by intrinsic semiconductor ? Explain drift and diffusion current for a semiconductor . 2 + 3
- 1251 (N) 7 [Turn over

- 8. a) The reverse saturation current of a NPN transistor operating in CB configuration is 10 μ A. For an emitter current of 2·4 mA, the collector current is 2·26 mA. Calculate the current gain and base current. 5
 - b) Calculate the current I, I_R and I_Z for the following circuit. 5

- 9. Write short notes on any *two* of the following : 2×5
 - a) Clamper circuit
 - b) Fermi level
 - c) Junction capacitance.