Roll No. Total No. of Pages: 02

Total No. of Questions: 09

MCA (Sem.-4)

COMPUTER BASED OPTIMIZATION METHODS

Subject Code: MCA-305 Paper ID: [B0116]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks each and students has to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY carrying TWENTY marks in all.
- 3. Use of non-programmable scientific calculator is allowed.

SECTION-A

1. Define operation research. Describe briefly its applications. (10) to solve the following system of equations:

Maximize
$$Z = 4X_1 + X_2 + 3X_3 + 5X_4$$

Subject to $4X_1 - 6X_2 - 5X_3 - 4X_4 \ge -20$
 $-3X_1 - 2X_2 + 4X_3 + X_4 \le 10$
 $-8X_1 - 3X_2 + 3X_3 + 2X_4 \le 20$
 $X_1, X, X, X \ge 0$ (10)

SECTION-B

3. Solve the following transportation problem for which the transportation cost (rupees per unit), origin availabilities and destination requirements are given below:

(10)

Destinations→ Origin↓	\mathbf{D}_1	D ₂	D_3	\mathbf{D}_4	D ₅	D ₆	Availabilities
O_1	1	2	1	4	5	2	30
\mathbf{O}_1	3	3	2	1	4	3	50
\mathbf{O}_1	4	2	5	9	6	2	75
\mathbf{O}_1	3	1	7	3	4	6	20
Requirements	20	40	30	10	50	25	175

1

4. State the assignment model. Describe an algorithm for the solution of the assignment problem. (10)

SECTION - C

- 5. What are the different decision making environments? Explain how decision making differs under conditions of certainty and risk. (10)
- 6. (a) Distinguish between dependent events and independent events. (5)
 - (b) Write a note on conditional probability. (5)

SECTION-D

- 7. What is dynamic programming? How it is different from linear programming? Give some applications of dynamic programming. (10)
- 8. Explain the revised simplex method and compare it with the regular simplex method. (10)

SECTION - E

- 9. Answer the following questions in brief:
 - (a) What is unbounded solution in LPP?
 - (b) What is degeneracy in simplex method?
 - (c) What is V.A.M.?
 - (d) What is meant by unbalanced transportation problems?
 - (e) What is degeneracy in transportation problems?
 - (f) Define probability.
 - (g) What is joint probability?
 - (h) What are mutually exclusive events?
 - (i) What is integer programming.
 - (j) Define unrestricted variables.