Total No. of Questions—4]

[Total No. of Printed Pages—3

Seat	
No.	

[4966]-3005

M.C.A. (Commerce Faculty) (III Semester) EXAMINATION, 2016 306: OPERATING SYSTEM (2013 PATTERN)

Time: Three Hours

Maximum Marks: 50

- N.B. := (i) All questions are compulsory.
 - (ii) Neat diagram must be drawn whenever necessary.
- **1.** Attempt the following (any seven):

 $[7 \times 2 = 14]$

- (a) What is the use of fork() and exec() system calls?
- (b) State functions of dispatcher.
- (c) Define process Arrival Time.
- (d) What is seek time?
- (e) What are the operations on files?
- (f) Define page fault.
- (g) Enlist the objective of operating system.
- (h) Define critical section.
- **2.** Attempt the following (any *three*):

 $[3 \times 4 = 12]$

- (a) Explain Bounded-Buffer problem.
- (b) Calculate Average Turn-around time and average waiting for following by using:
 - (i) FCFS

(ii) Pre-emptive SJF.

Process	Burst	Arrival
	Time	Time
P_1	8	0
P_2	6	1
P_3	7	3
P_4	9	3

- (c) Explain Direct Memory Access (DMA).
- (d) Write note on Segmentation.

3. Attempt the following (any three):

 $[3 \times 4 = 12]$

- (a) Explain multilevel feedback queue.
- (b) What is semaphores? Explain it.
- (c) Explain deadlock prevention method in detail.
- (d) Consider the following page reference string:

Assume there are 3 free frames. Find page fault by using:

- (i) FIFO
- (ii) LRU.

4. Attempt the following (any three):

 $[3 \times 4 = 12]$

- (a) Explain indexed allocation method.
- (b) Explain operations on process.

- (c) Write short note on polling.
- (d) Consider the following snapshot of system. A system has 5 processes. A through E and resource types A through D.

Ailocation				
	\mathbf{A}	В	\mathbf{C}	D
P_0	0	6	3	2
P_1	0	0	1	2
P_2	1	0	0	0
P_3	1	3	5	4
P_4	0	0	1	4

	Max			
	\mathbf{A}	\mathbf{B}	\mathbf{C}	D
P_0	0	6	5	2
P_1	0	0	1	2
P_2	1	7	5	0
P_3	2	3	5	6
P_4	0	6	5	6

Available				
	Resources			
A	\mathbf{B}	\mathbf{C}	D	
1	5	2	0	

Answer the following questions using Banker's algorithm:

- (i) What are contents of matrix need?
- (ii) Is the system in a safe stage.